. 24/7 Space News .
WATER WORLD
Microbes take center stage in workings of 'the river's liver'
by Staff Writers
Richland WA (SPX) Apr 08, 2016


Microbes and their influential role in Earth's climate take center stage in the area where river water and groundwater mix - an area known as the hyporheic zone. Image courtesy of PNNL. Watch a video on the research here.

When water levels in rivers rise, an area known as the "river's liver" kicks into action, cleansing river water of pollutants and altering the flow of greenhouse gases into the atmosphere.

Now, in a paper published in Nature Communications, scientists at the Department of Energy's Pacific Northwest National Laboratory present evidence suggesting that rising river waters deliver a feast of carbon to hungry microbes where water meets land, triggering increased activity, which could naturally boost emissions of carbon dioxide, methane and other greenhouse gases.

"This area around a river is a biogeochemical hot spot with a great deal of microbial activity," said ecologist James Stegen, the lead author of the study. "Understanding what occurs when surface water and groundwater meet and mix is critical for understanding our planet's carbon cycle."

The hyporheic zone
Worldwide, bacteria, fungi, algae and other microorganisms in and around rivers convert massive amounts of organic carbon into carbon dioxide, methane and nitrous oxide - processes that are central to the future of the planet.

Stegen's team focused on levels of microbial activity in an area known as the hyporheic zone, which includes the sediment where river water mixes with groundwater. Most people might know the area best as a place where they're likely to sink into squishy mud and get soaked feet.

It includes the land directly beneath the river as well as along its edges, sometimes extending up to a few hundred yards from the river's edge. The sediments under the land surface are often porous like a sponge, becoming saturated when river water is high - such as during floods, high tides, and large releases of water from dams - and draining when water is low.

Scientists know the hyporheic zone as a critical ecological feature that harbors a rich diversity of microorganisms that filter a river's water. For instance, the hyporheic zone removes nitrates - pollutants that come from agricultural runoff and sewage releases.

But the zone has not been a focus for many scientists; they typically have their hands full analyzing the complex conditions in either groundwater or river water. Focusing on the area where the two types of water mix is incredibly challenging - but critical for understanding the planet's response to environmental change.

Dinner served; emissions result
A riot of physical perturbations takes place when river water rises and storms into the nooks and crevices of rocks and sediments in the hyporheic zone. Sands shift, rocks move, and water flows into new places.

Picture the New Jersey shoreline under assault during Hurricane Sandy; similar encounters between the land surface and rising waters are happening constantly on minuscule landscapes in the sediments along rivers all around the globe.

The rising waters spell opportunity for hungry microbes that may have been without food since the last high water event. The water cascades through channels and pores in sediment and rock, moving grains of sediment, slowly eating away at rock, and delivering meals of carbon, oxygen, nitrogen and other substances.

The team found that when river water and groundwater mix, there is a decline in the dissolved organic carbon and an increase in inorganic carbon - clear signals that microbes have been stimulated to consume organic carbon and produce carbon dioxide.

The team believes the boost in carbon to hungry microbes results in the burst of microbial activity; such a spike in activity likely translates into a surge of greenhouse-gas emissions.

The exact reason for the increased microbial activity has been a source of debate for scientists. Some have thought that the sudden change in water flow causes the microbes to change their chemistry or to simply blow apart.

But Stegen's team believes the increased activity is largely the result of the physical changes that come with rising waters - how water filters through sediments, carrying carbon to the nooks and crannies of the hyporheic zone - and how long-isolated microbes respond to the sudden influx of food. The team hypothesizes that the main source of carbon fueling these spikes in activity is from carbon and nutrient sources in the river, in the form of small bits of leaves, plants, dead fish, and other detritus.

The scientists also showed that as this microbial action increases, the overall ecological activity of the system becomes more directed and predictable - a finding that seems paradoxical given the dynamics of the mixing waters and the intensified microbial activity.

Findings along the Columbia River
The team's data included sophisticated measurements of various forms of carbon from water samples taken from the Columbia River and its hyporheic zone both along the shoreline and from groundwater wells approximately 100 yards away.

The team conducted its study in November 2013 in central Washington, where the Columbia - one of the nation's largest rivers - flows near the Hanford site, a former nuclear materials processing facility. River levels fluctuated by about three feet during this time, due mainly to adjustments in water discharge at dams upstream.

Since then, some rivers in the Pacific Northwest have seen more extreme fluctuations, particularly the Yakima, which relies on snowmelt from the Cascades to the west. As global temperatures continue to warm, scientists expect extreme climate events to occur more often, including longer periods of drought and larger storms.

Stegen's team is exploring the implications on river dynamics. For instance, less snowmelt could translate to big changes in the timing and magnitude of river water and groundwater flow - making the need to understand what happens in the hyporheic zone even more important.

Research paper: Groundwater-Surface Water Mixing Shifts Ecological Assembly Processes and Stimulates Organic Carbon Turnover, Nature Communications, April 7, 20


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Pacific Northwest National Laboratory
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Large variations in precipitation over the past millennium
Stockholm, Sweden (SPX) Apr 07, 2016
According to a new study in Nature, the Northern Hemisphere has experienced considerably larger variations in precipitation during the past twelve centuries than in the twentieth century. Researchers from Sweden, Germany, and Switzerland have found that climate models overestimated the increase in wet and dry extremes as temperatures increased during the twentieth century. The new results will e ... read more


WATER WORLD
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

WATER WORLD
'Mixed Reality' Technology Brings Mars to Earth

Opportunity moves to new locations to the southwest

NASA: Manned mission to Mars still 'long way' off

Mars Express keeps watch on frosty Martian valleys

WATER WORLD
Spanish port becomes global 'smart city' laboratory

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

Space-Related Budget Requests for FY17

WATER WORLD
Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

WATER WORLD
Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

WATER WORLD
Water System Tested on Crew Access Arm at KSC

Roscosmos Says Reports on Sea Launch Project Sale Might Be True

India to launch 22 satellites by single rocket in May

NASA's 'Spaceport of the Future' Reaches Another Milestone

WATER WORLD
'Smoothed' light will help search for Earth's twins

Map of rocky exoplanet reveals a lava world

Instrument Team Selected to Build Next-Gen Planet Hunter

Oddball planet raises questions about origins of 'hot Jupiters'

WATER WORLD
Drexel rolls out method for making the invisible brushes that repel dirt

Transparent wood could one day help brighten homes and buildings

Researchers use 3-D printing to create structure with active chemistry

Electronic counterpart to ecological models revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.