. 24/7 Space News .
'Smoothed' light will help search for Earth's twins
by Staff Writers
Moscow, Russia (SPX) Apr 01, 2016

The image of a star reaches the telescope mirror, then it passes through the adaptive optics system that increases the contrast of the image, and then the signal passes through the EUI and is transmitted to the coronagraph. Image courtesy authors of the study. For a larger version of this image please go here.

Physicists of MIPT (Moscow Institute of Physics and Technology) and the Space Research Institute of the Russian Academy of Sciences developed optical technology for the "correction" of light coming from distant stars, which will significantly improve the "seeing" of telescopes and therefore will enable us to directly observe exoplanets as Earth-twins. Their work has been published in the Journal of Astronomical Telescopes, Instruments, and Systems (JATIS).

The first exoplanets (extra solar planets), which are the planets outside our solar system, had been discovered in the late 20th century, and now we have detected of more than two thousand of them. It is almost impossible to see the faint light of the planets themselves without special tools - it is saturated "overshadowed" by the radiation of parent star.

Therefore exoplanets are discovered by indirect methods: by registration of the weak periodic fluctuations in the luminosity of the star when a planet passes in front of its disk (the transit method), or by spectral translational vibrations of the star itself from the impact of the planet's gravity (the radial-velocity method).

For the first time, in the late 2000s, astronomers were able to directly obtain images of exoplanets. So far we have about 65 of such images. To obtain them, the scientists use stellar coronagraphs first created in 1930s for observations of the solar corona outside eclipses known as solar coronagraphs. These devices have a focal mask - an "artificial moon" inside them, which blocks some part of the field of view - ultimately, it covers the solar disk, allowing you to see the dim solar corona.

To repeat this technique for the stars, we need a much higher level of accuracy and much higher resolution of the telescope, which accommodates a coronagraph. Apparent size of the orbit of Earth-type planets, nearest to us, is about 0.1 arcseconds. This is close to the resolution limit of modern space telescopes (for example, the resolution of the space telescope Hubble is about 0.05 seconds).

To remove the effects of atmospheric distortions in ground-based telescopes, scientists use adaptive optics - mirrors that can change shape while adjusting to the state of the atmosphere. In some cases, the mirror shape can be maintained with an accuracy of 1 nanometer, but such systems do not keep pace with the dynamics of atmospheric changes and are extremely expensive.

A team led by Alexander Tavrov, an associate professor at MIPT and the Head of the Planetary Astronomy Laboratory at the Space Research Institute of the Russian Academy of Sciences, has found a way to obtain the highest resolution, while using relatively simple and inexpensive systems of adaptive optics.

They used the idea of a EUI (Extremely Unbalanced Interferometer) proposed by one of the article's authors - Juno Nishikawa, a Japanese scientist working at the National Astronomical Observatory of Japan. Conventional interferometry implies using the waves with approximately equal intensity for combining them into a single wavefront with the purpose of producing a clear and sharp image.

The EUI light is divided into two beams (weak and strong), whose amplitudes have an approximate preset ratio of 1:10. A weak beam passes through the adaptive optics system, after which the two beams are brought together again and interfere with each other.

As a result, the weak beam, so to say, "smoothes out" the light of the strong beam, which can significantly reduce both the distortion of the wavefront and the contribution of stellar speckle patterns (a random interference pattern).

"Through the use of a relatively simple optical set-up, we can obtain the image contrast at the quality necessary for the direct observation of Earth-type planets by means of coronagraphs. Of course, compared to foreign developments, our system requires a more complex control technique, but at the same time it is much less dependent on the temperature stability that greatly simplifies its operation in space," the team leader Alexander Tavrov says.

With the help of computer simulation, they have determined approximate characteristics of the system developed by them. According to calculations, the resulting scheme provides the image contrast of about 10-9. Furthermore, it was demonstrated that EUI shows achromatism, i.e. the reduction of aberrations with increasing wavelength.

In the future, scientists plan to create a laboratory prototype and perform a number of experiments on it. As Alexander Tavrov notes, "We want to see the distant worlds through a telescope, but it implies that the distant worlds might see us as well. An advanced technology - by only some of 50 to 100 years - could be enough to do it many times more precisely than we are able to do it now."

Research paper: Extremely unbalanced interferometer for precise wavefront control in stellar coronagraphy

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Moscow Institute of Physics and Technology
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Investigating the Mystery of Migrating 'Hot Jupiters'
Pasadena CA (JPL) Mar 29, 2016
The last decade has seen a bonanza of exoplanet discoveries. Nearly 2,000 exoplanets - planets outside our solar system - have been confirmed so far, and more than 5,000 candidate exoplanets have been identified. Many of these exotic worlds belong to a class known as "hot Jupiters." These are gas giants like Jupiter but much hotter, with orbits that take them feverishly close to their stars. ... read more

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

Ancient Polar Ice Reveals Tilting of Earth's Moon

NASA: Manned mission to Mars still 'long way' off

Opportunity moves to new locations to the southwest

Mars Express keeps watch on frosty Martian valleys

HiRISE: 45,000 Mars Orbits and Counting

ASU to develop the next generation science education courseware for NASA

Space-Related Budget Requests for FY17

New DNA/RNA Tool to Diagnose, Treat Diseases

NASA Selects American Small Business, Research Institution Projects for Continued Development

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Roscosmos Says Reports on Sea Launch Project Sale Might Be True

NASA's 'Spaceport of the Future' Reaches Another Milestone

India to launch 22 satellites by single rocket in May

MHI signs H-IIA launch deal for UAE Mars mission

Map of rocky exoplanet reveals a lava world

Instrument Team Selected to Build Next-Gen Planet Hunter

Oddball planet raises questions about origins of 'hot Jupiters'

Investigating the Mystery of Migrating 'Hot Jupiters'

Students learn astrophysics through mixed-reality computer simulation

Lockheed Martin Opens Space Fence Test Facility

For the first time scientists can observe the nano structure of food in 3-D

A new model for how twisted bundles take shape

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.