. 24/7 Space News .
SATURN DAILY
Methane in the plumes of Saturn's moon Enceladus: Possible signs of life?
by Staff Writers
Tucson AZ (SPX) Jul 07, 2021

File illustration of what Enceladus could be like.

An unknown methane-producing process is likely at work in the hidden ocean beneath the icy shell of Saturn's moon Enceladus, suggests a new study published in Nature Astronomy by scientists at the University of Arizona and Paris Sciences and Lettres University.

Giant water plumes erupting from Enceladus have long fascinated scientists and the public alike, inspiring research and speculation about the vast ocean that is believed to be sandwiched between the moon's rocky core and its icy shell. Flying through the plumes and sampling their chemical makeup, the Cassini spacecraft detected a relatively high concentration of certain molecules associated with hydrothermal vents on the bottom of Earth's oceans, specifically dihydrogen, methane and carbon dioxide. The amount of methane found in the plumes was particularly unexpected.

"We wanted to know: Could Earthlike microbes that 'eat' the dihydrogen and produce methane explain the surprisingly large amount of methane detected by Cassini?" said Regis Ferriere, an associate professor in the University of Arizona Department of Ecology and Evolutionary Biology and one of the study's two lead authors. "Searching for such microbes, known as methanogens, at Enceladus' seafloor would require extremely challenging deep-dive missions that are not in sight for several decades."

Ferriere and his team took a different, easier route: They constructed mathematical models to calculate the probability that different processes, including biological methanogenesis, might explain the Cassini data.

The authors applied new mathematical models that combine geochemistry and microbial ecology to analyze Cassini plume data and model the possible processes that would best explain the observations. They conclude that Cassini's data are consistent either with microbial hydrothermal vent activity, or with processes that don't involve life forms but are different from the ones known to occur on Earth.

On Earth, hydrothermal activity occurs when cold seawater seeps into the ocean floor, circulates through the underlying rock and passes close by a heat source, such as a magma chamber, before spewing out into the water again through hydrothermal vents. On Earth, methane can be produced through hydrothermal activity, but at a slow rate. Most of the production is due to microorganisms that harness the chemical disequilibrium of hydrothermally produced dihydrogen as a source of energy, and produce methane from carbon dioxide in a process called methanogenesis.

The team looked at Enceladus' plume composition as the end result of several chemical and physical processes taking place in the moon's interior. First, the researchers assessed what hydrothermal production of dihydrogen would best fit Cassini's observations, and whether this production could provide enough "food" to sustain a population of Earthlike hydrogenotrophic methanogens. To do that, they developed a model for the population dynamics of a hypothetical hydrogenotrophic methanogen, whose thermal and energetic niche was modeled after known strains from Earth.

The authors then ran the model to see whether a given set of chemical conditions, such as the dihydrogen concentration in the hydrothermal fluid, and temperature would provide a suitable environment for these microbes to grow. They also looked at what effect a hypothetical microbe population would have on its environment - for example, on the escape rates of dihydrogen and methane in the plume.

"In summary, not only could we evaluate whether Cassini's observations are compatible with an environment habitable for life, but we could also make quantitative predictions about observations to be expected, should methanogenesis actually occur at Enceladus' seafloor," Ferriere explained.

The results suggest that even the highest possible estimate of abiotic methane production - or methane production without biological aid - based on known hydrothermal chemistry is far from sufficient to explain the methane concentration measured in the plumes. Adding biological methanogenesis to the mix, however, could produce enough methane to match Cassini's observations.

"Obviously, we are not concluding that life exists in Enceladus' ocean," Ferriere said. "Rather, we wanted to understand how likely it would be that Enceladus' hydrothermal vents could be habitable to Earthlike microorganisms. Very likely, the Cassini data tell us, according to our models.

"And biological methanogenesis appears to be compatible with the data. In other words, we can't discard the 'life hypothesis' as highly improbable. To reject the life hypothesis, we need more data from future missions," he added.

The authors hope their paper provides guidance for studies aimed at better understanding the observations made by Cassini and that it encourages research to elucidate the abiotic processes that could produce enough methane to explain the data.

For example, methane could come from the chemical breakdown of primordial organic matter that may be present in Enceladus' core and that could be partially turned into dihydrogen, methane and carbon dioxide through the hydrothermal process. This hypothesis is very plausible if it turns out that Enceladus formed through the accretion of organic-rich material supplied by comets, Ferriere explained.

"It partly boils down to how probable we believe different hypotheses are to begin with," he said. "For example, if we deem the probability of life in Enceladus to be extremely low, then such alternative abiotic mechanisms become much more likely, even if they are very alien compared to what we know here on Earth."

According to the authors, a very promising advance of the paper lies in its methodology, as it is not limited to specific systems such as interior oceans of icy moons and paves the way to deal with chemical data from planets outside the solar system as they become available in the coming decades.

Research Report: "Bayesian analysis of Enceladus's plume data to assess methanogenesis"


Related Links
University Of Arizona
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SATURN DAILY
Ocean currents predicted on Enceladus
Pasadena CA (SPX) Mar 26, 2021
Buried beneath 20 kilometers of ice, the subsurface ocean of Enceladus--one of Saturn's moons--appears to be churning with currents akin to those on Earth. The theory, derived from the shape of Enceladus's ice shell, challenges the current thinking that the moon's global ocean is homogenous, apart from some vertical mixing driven by the warmth of the moon's core. Enceladus, a tiny frozen ball about 500 kilometers in diameter (about 1/7th the diameter of Earth's moon), is the sixth largest mo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SATURN DAILY
British billionaire Richard Branson plans to soar into space Sunday

What does it take to do a spacewalk

Virgin Galactic, Blue Origin face off in space tourism market

Final frontier: Billionaires Branson and Bezos bound for space

SATURN DAILY
Skyroot Aerospace completes Series A funding

Reaction Engines secures new UK Government funding for Space Access Program

After 60 years, nuclear power for spaceflight is still tried and true

Second iteration of successful Vanguard Incubation Process approaches Summit

SATURN DAILY
Landing on Mars is one step closer for British-built rover

'Lakes' under Mars' south pole: A muddy picture?

Curiosity rover finds patches of rock record erased, revealing clues

Meet the open-source software powering NASA's Ingenuity Mars Helicopter

SATURN DAILY
Exercise bike in space helps keep crew fit

Homemade spacesuits ensure safety of Chinese astronauts in space

Mechanical arm is Chinese astronauts' space helper

Tiangong: astronauts are working on China's new space station - here's what to expect

SATURN DAILY
Space, the final frontier for billionaire Richard Branson

Department of Space's commercial arm NewSpace India can also lease ISRO assets

OneWeb and BT to explore rural connectivity solutions for UK

Russian rocket launches UK telecom satellites

SATURN DAILY
NASA orders satellite container and trolley from RUAG Space

A touch of sun heats up material scieces at ESTEC

Defense Dept. cancels $10 billion JEDI cloud contract given to Microsoft

Marine Corps corporal gets 3D-printed teeth with jaw reconstruction

SATURN DAILY
Goldilocks planets 'with a tilt' may develop more complex life

Ancient diamonds show Earth was primed for life's explosion at least 2.7 billion years ago

Are we missing other Earths

Unique exoplanet photobombs Cheops study of nearby star system

SATURN DAILY
Scientists solve 40-year mystery over Jupiter's X-ray aurora

Giant comet found in outer solar system by Dark Energy Survey

Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.