. 24/7 Space News .
IRON AND ICE
Meteorite strikes may create unexpected form of silica
by Staff Writers
Washington DC (SPX) Aug 27, 2020

X-ray diffraction images showing the new form of silica created by sending an intense shock wave through a sample of quartz using a specialized gas gun. When the x-rays bounce off repeating planes of a crystalline structure, they scatter. This creates a distinctive ring pattern. Each ring is associated with a different plane and together this data can tell researchers about the material's atomic-level architecture. Image is courtesy of Sally June Tracy, Stefan Turneaure, and Thomas Duffy.

When a meteorite hurtles through the atmosphere and crashes to Earth, how does its violent impact alter the minerals found at the landing site? What can the short-lived chemical phases created by these extreme impacts teach scientists about the minerals existing at the high-temperature and pressure conditions found deep inside the planet?

New work led by Carnegie's Sally June Tracy examined the crystal structure of the silica mineral quartz under shock compression and is challenging longstanding assumptions about how this ubiquitous material behaves under such intense conditions. The results are published in Science Advances.

"Quartz is one of the most abundant minerals in Earth's crust, found in a multitude of different rock types," Tracy explained. "In the lab, we can mimic a meteorite impact and see what happens."

Tracy and her colleagues - Washington State University's (WSU) Stefan Turneaure and Princeton University's Thomas Duffy, a former Carnegie Fellow - used a specialized cannon-like gas gun to accelerate projectiles into quartz samples at extremely high speeds - several times faster than a bullet fired from a rifle.

Special X-ray instruments were used to discern the crystal structure of the material that forms less than one-millionth of a second after impact. Experiments were carried out at the Dynamic Compression Sector (DCS), which is operated by WSU and located at the Advanced Photon Source, Argonne National Laboratory.

Quartz is made up of one silicon atom and two oxygen atoms arranged in a tetrahedral lattice structure. Because these elements are also common in the silicate-rich mantle of the Earth, discovering the changes quartz undergoes at high-pressure and -temperature conditions, like those found in the Earth's interior, could also reveal details about the planet's geologic history.

When a material is subjected to extreme pressures and temperatures, its internal atomic structure can be re-shaped, causing its properties to shift. For example, both graphite and diamond are made from carbon.

But graphite, which forms at low pressure, is soft and opaque, and diamond, which forms at high pressure, is super-hard and transparent. The different arrangements of carbon atoms determine their structures and their properties, and that in turn affects how we engage with and use them.

Despite decades of research, there has been a long-standing debate in the scientific community about what form silica would take during an impact event, or under dynamic compression conditions such as those deployed by Tracy and her collaborators. Under shock loading, silica is often assumed to transform to a dense crystalline form known as stishovite - a structure believed to exist in the deep Earth. Others have argued that because of the fast timescale of the shock the material will instead adopt a dense, glassy structure.

Tracy and her team were able to demonstrate that counter to expectations, when subjected to a dynamic shock of greater than 300,000 times normal atmospheric pressure, quartz undergoes a transition to a novel disordered crystalline phase, whose structure is intermediate between fully crystalline stishovite and a fully disordered glass. However, the new structure cannot last once the burst of intense pressure has subsided.

"Dynamic compression experiments allowed us to put this longstanding debate to bed," Tracy concluded. "What's more, impact events are an important part of understanding planetary formation and evolution and continued investigations can reveal new information about these processes."

Research Report: "Structural Response of Alpha-Quartz Under Plate-Impact Shock Compression"


Related Links
Carnegie Institution For Science
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Surrey academics develop a new method to determine the origin of stardust in meteorites
Guildford UK (SPX) Aug 12, 2020
Scientists have made a key discovery thanks to stardust found in meteorites, shedding light on the origin of crucial chemical elements. Meteorites are critical to understanding the beginning of our solar system and how it has evolved over time. However, some meteorites contain grains of stardust that predate the formation of our solar system and are now providing important information about how the elements in the universe formed. In a study published by Physical Review Letters, researchers ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Russian cosmonaut sheds light on how ISS crew deals with suspected air leak

The Seventh Meeting of the Japan-U.S. Comprehensive Dialogue on Space: Joint Statement

Boeing's Starliner makes progress ahead of flight test with astronauts

ISS crew moved to Russian segment for 3 days to search for air leak

IRON AND ICE
New launch opportunity begins on Sept 1 for small sats mission

Safety of SpaceX suits an 'open question' says Russian designer

Ball Aerospace completes small satellite, Green Fuel Mission

NASA's Green Propellant Infusion Mission nears completion

IRON AND ICE
China releases recommended Chinese names for Mars craters

Follow Perseverance in real time on its way to Mars

Sustained planetwide storms may have filled lakes, rivers on ancient mars

Deep learning will help future Mars rovers go farther, faster, and do more science

IRON AND ICE
Mars-bound Tianwen 1 hits milestone

China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

IRON AND ICE
Africa is investing more in space and satellite industry

Satellite constellations could hinder astronomical research, scientists warn

ESA astronauts are flat out training

Ban on import of communication satellites opens up opportunity says ISRO chief

IRON AND ICE
NASA selects proposals for new space environment missions

NASA engineers checking InSight's weather sensors

US to spend $625 mn on super-computing research centers

Spacepath Communications wins large order for solid-state RF power amplifiers

IRON AND ICE
Bacteria could survive travel between Earth and Mars when forming aggregates

Fifty new planets confirmed in machine learning first

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint

Bacteria could survive the trip to Mars in the form of thick aggregates

IRON AND ICE
Technology ready to explore subsurface oceans on Ganymede

Large shift on Europa was last event to fracture its surface

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.