. 24/7 Space News .
Matter Flashed At Ultra Speed

illustration only
by Staff Writers
Paris, France (ESO) Jun 13, 2007
Using a robotic telescope at the ESO La Silla Observatory, astronomers have for the first time measured the velocity of the explosions known as gamma-ray bursts. The material is travelling at the extraordinary speed of more than 99.999% of the velocity of light, the maximum speed limit in the Universe.

"With the development of fast-slewing ground-based telescopes such as the 0.6-m REM telescope at ESO La Silla, we can now study in great detail the very first moments following these cosmic catastrophes," says Emilio Molinari, leader of the team that made the discovery.

Gamma-ray bursts (GRBs) are powerful explosions occurring in distant galaxies, that often signal the death of stars. They are so bright that, for a brief moment, they almost rival the whole Universe in luminosity.

They last, however, for only a very short time, from less than a second to a few minutes. Astronomers have long known that, in order to emit such incredible power in so little time, the exploding material must be moving at a speed comparable with that of light, namely 300 000 km per second. By studying the temporal evolution of the burst luminosity, it has now been possible for the first time to precisely measure this velocity.

Gamma-ray bursts, which are unseen by our eyes, are discovered by artificial satellites. The collision of the gamma-ray burst jets into the surrounding gas generates an afterglow visible in the optical and near-infrared that can radiate for several weeks.

An array of robotic telescopes were built on the ground, ready to catch this vanishing emission (see e.g. ESO 17/07). On 18 April and 7 June 2006, the NASA/PPARC/ASI Swift satellite detected two bright gamma-ray bursts. In a matter of a few seconds, their position was transmitted to the ground, and the REM telescope began automatically to observe the two GRB fields, detecting the near-infrared afterglows, and monitored the evolution of their luminosity as a function of time (the light curve).

The small size of the telescope is compensated by its rapidity of slewing, which allowed astronomers to begin observations very soon after each GRB's detection (39 and 41 seconds after the alert, respectively), and to monitor the very early stages of their light curve.

The two gamma-ray bursts were located 9.3 and 11.5 billion light-years away, respectively.

For both events, the afterglow light curve initially rose, then reached a peak, and eventually started to decline, as is typical of GRB afterglows. The peak is, however, only rarely detected. Its determination is very important, since it allows a direct measurement of the expansion velocity of the explosion of the material.

For both bursts, the velocity turns out to be very close to the speed of light, precisely 99.9997% of this value. Scientists use a special number, called the Lorentz factor, to express these high velocities. Objects moving much slower than light have a Lorentz factor of about 1, while for the two GRBs it is about 400.

"Matter is thus moving with a speed that is only different from that of light by three parts in a million," says Stefano Covino, co-author of the study. "While single particles in the Universe can be accelerated to still larger velocities - i.e. much larger Lorentz factors - one has to realise that in the present cases, it is the equivalent of about 200 times the mass of the Earth that acquired this incredible speed."

"You certainly wouldn't like to be in the way," adds team member Susanna Vergani.

The measurement of the Lorentz factor is an important step in understanding gamma-ray burst explosions. This is in fact one of the fundamental parameters of the theory which tries to explain these gigantic explosions, and up to now it was only poorly determined.

"The next question is which kind of 'engine' can accelerate matter to such enormous speeds," says Covino.

"REM observations of GRB060418 and GRB060607A: the onset of the afterglow and the initial fireball Lorentz factor determination", by E. Molinari, S. D. Vergani, D. Malesani, S. Covino, et al. The paper is available at http://dx.doi.org/10.1051/0004-6361:20077388 (A and A, 469, 2007). The REM team is formed by G. Chincarini, E. Molinari, F.M. Zerbi, L.A. Antonelli, S. Covino, P. Conconi, L. Nicastro, E. Palazzi, M. Stefanon, V. Testa, G. Tosti, F. Vitali, A. Monfardini, F. D'Alessio, P. D'Avanzo, G. Malaspina, S. Piranomonte, S.D. Vergani, P.A. Ward, S. Campana, P. Goldoni, D. Guetta, D. Malesani, N. Masetti, E.J.A. Meurs, L. Norci, E. Pian, L. Stella, G. Tagliaferri, G. Ihle, L. Gonzalez, A. Pizarro, P. Sinclair, and J. Valenzuela.

Email This Article

Related Links
European Southern Observatory
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Spitzer Nets Thousands Of Galaxies In A Giant Cluster
Greenbelt MD (SPX) Jun 13, 2007
In just a short amount of time, NASA's Spitzer Space Telescope has bagged more than a thousand previously unknown dwarf galaxies in a giant cluster of galaxies. Despite their diminutive sizes, dwarf galaxies play a crucial role in cosmic evolution. Astronomers think they were the first galaxies to form, and they provided the building blocks for larger galaxies.







  • Stardust Memories As Space Becomes The Final Frontier In Funerals
  • Vignette Helps NASA Make Giant Leap To The Moon And Beyond
  • Star Trek Fans Beam Into Canadian Wild West
  • Fourteen Space Agencies Sign Joint Exploration Agreement

  • Wandering Poles May Explain Ups And Downs Of Ancient Mars Shoreline
  • Spirit Studies Layered Rocks At Home Plate
  • The Viability Of Methane-Producing Microorganisms In Simulated Martian Soils
  • Taking The Opportunity To Check New Driving Capabilities

  • Dawn Spacecraft Never Damaged Set To Launch July 7
  • Delta 2 Launch To Launch COSMO-SkyMed Satellite
  • Russia Launches Four Satellites Into Orbit For Globalstar
  • Proton-M Carrier With US Telecom Satellite To Lift Off In June

  • NASA Satellites Watch as China Constructs Giant Dam
  • Kalam Calls For Development Of Satellite Systems For Entire Humanity
  • Boeing Launches Italian Earth Observation Satellite
  • Envisat Captures First Image Of Sargassum From Space

  • Full Set Of Jupiter Close-Approach Data Reaches Home
  • A Goofball Called Pluto
  • First Observation Of A Uranian Mutual Event
  • Continuing Our Jovian Journey

  • Spitzer Nets Thousands Of Galaxies In A Giant Cluster
  • A Team Of Astronomers Identifies The Most Massive Star Ever
  • Chronicle Of A Death Foretold
  • Matter Flashed At Ultra Speed

  • A Climate Monitoring Station On The Moon
  • No Plans To Join NASA Lunar Program Says Russian Space Agency
  • Oresme Crater Show Many Signs Of The Early Lunar Heavy Bombardment
  • First China Mission To Moon To Launch By Year End

  • Albertis Seeks Share In Galileo Partner Hispasat As Surrey Welcomes EU Support
  • EU Agrees Galileo Needs Public Bailout
  • EU To Back Galileo Bailout And But Faces Tough Talks On New Funds
  • Latest AeroAstro Asset Tracking Satellite Downlink Decoder Ready For Deployment

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement