. 24/7 Space News .
STELLAR CHEMISTRY
Massive photons in an artificial magnetic field
by Staff Writers
Warsaw, Poland (SPX) Nov 15, 2019

The scheme of the experiment - circular polarization of light (marked in red and blue) transmitted through a cavity filled with liquid crystal depending on the direction of propagation. (Source: M. Krol, UW Physics)

An international research collaboration from Poland, the UK and Russia has created a two-dimensional system - a thin optical cavity filled with liquid crystal - in which they trapped photons. As the properties of the cavity were modified by an external voltage, the photons behaved like massive quasiparticles endowed with a magnetic moment, called "spin", under the influence of an artificial magnetic field. The research has been published in Science on Friday, 8 November 2019.

The world around us has one temporal and three spatial dimensions. Physicists studying condensed matter have long been dealing with systems of lower dimensionality - two-dimensional (2D) quantum wells, one-dimensional (1D) quantum wires and zero-dimensional (0D) quantum dots. 2D systems have found the widest technical applications - it is thanks to the reduced dimensions that efficient LEDs and laser diodes, fast transistors in integrated circuits, and WiFi radio amplifiers operate.

Trapped electrons in two dimensions can behave completely differently than free electrons. For example, in graphene, a two-dimensional carbon structure with honeycomb symmetry, electrons behave like massless objects , i.e. light particles called photons.

Electrons in a crystal interact with each other and with the crystal lattice, creating a complex system whose description is possible thanks to the introduction of the concept of so-called quasiparticles. Properties of these quasiparticles, including electric charge, magnetic moment and mass, depend on the symmetry of the crystal and its spatial dimension. Physicists can create materials with reduced dimensions, discovering "quasi-universes" full of exotic quasiparticles. The massless electron in two-dimensional graphene is such an example.

These discoveries inspired researchers from the University of Warsaw, the Polish Military University of Technology, the Institute of Physics of the Polish Academy of Sciences, the University of Southampton and the Skolkovo Institute near Moscow, to study light trapped in two-dimensional structures - optical cavities. The authors of the Science paper created an optical cavity in which they trapped photons between two mirrors. The original idea was to fill the cavity with a liquid crystal material that acts as an optical medium.

Under the influence of an external voltage, molecules of this medium can rotate and change the optical path length. Because of this, it was possible to create standing waves of light in the cavity, whose energy (frequency of vibrations) was different when the electric field of the wave (polarization) was directed across the molecules and different for polarization along their axis (this phenomenon is called optical anisotropy).

During the research, conducted at the University of Warsaw, the unique behavior of photons trapped in the cavity was found as they behaved like mass-bearing quasiparticles. Such quasiparticles have been observed before, but they were difficult to manipulate because the light does not react to electric or magnetic fields.

This time, it was noted that as the optical anisotropy of the liquid crystal material in the cavity was changed, the trapped photons behaved like quasiparticles endowed with a magnetic moment, or a "spin" in "artificial magnetic field". Polarization of the electromagnetic wave played the role of "spin" for light in the cavity. The behavior of light in this system is easiest to explain using the analogy of the behavior of electrons in condensed matter.

The equations describing the motion of photons trapped in the cavity resemble the equations of motion of electrons with spin. Therefore, it was possible to build a photonic system that perfectly imitates electronic properties and leads to many surprising physical effects such as topological states of light.

The discovery of new phenomena related to the entrapment of light in optically anisotropic cavities may enable the implementation of new optoelectronic devices, e.g. optical neural networks and perform neuromorphic calculations. There is particular promise to the prospect of creating a unique quantum state of matter - the Bose Einstein condensate. Such a condensate can be used for quantum calculations and simulations, solving problems that are too difficult for modern computers. The studied phenomena will open up new possibilities for technical solutions and further scientific discoveries.

Research Report: Photonic Engineering of Spin-Orbit Synthetic Hamiltonians in Liquid Crystal Cavities


Related Links
Faculty of Physics University of Warsaw
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Scientists synthesized light with new intrinsic chirality to tell mirror molecules apart
Berlin, Germany (SPX) Oct 29, 2019
Light is the fastest way to distinguish right- and left-handed chiral molecules, which has important applications in chemistry and biology. However, ordinary light only weakly senses molecular handedness. Researchers from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Israel Institute of Technology (Technion) and Technische Universitaet Berlin (TU Berlin) have now shown how to generate and characterize an entirely new type of light, synthetic chiral light, whic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Are we set to taste space wine

Cygnus NG-12 cargo vehicle looking good on arrival

Paragon wins $2M contract under NASA Tipping Point Program

Virgin Galactic's high-risk space adventure will likely pay off

STELLAR CHEMISTRY
Not your average rocket launch; 45th SW supports Pegasus ICON

ATLAS Space Operations partners with Aevum to support ASLON-45 Space Lift

All four engines are attached to the SLS Core Stage for Artemis I

Advanced electric propulsion thruster for NASA's Gateway achieves full power demonstration

STELLAR CHEMISTRY
The Mars Mole and the challenging ground of the Red Planet

Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

STELLAR CHEMISTRY
Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

STELLAR CHEMISTRY
European network of operations centres takes shape

D-Orbit signs contract with OneWeb in the frame of ESA project Sunrise

Space: a major legal void

SpaceX to launch 42,000 satellites

STELLAR CHEMISTRY
Artificial intelligence to run the chemical factories of the future

Asian-backed consortium wins massive iron ore deal in Guinea

Multimaterial 3D printing manufactures complex objects, fast

Plasma crystal research on the ISS

STELLAR CHEMISTRY
Study refines which exoplanets are potentially habitable

Life on Venus and the interplanetary transfer of biota from Earth

NASA instrument to probe planet clouds on European mission

The most spectacular celestial vision you'll never see

STELLAR CHEMISTRY
Juice cast in gold

SwRI to plan Pluto orbiter mission

NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.