. 24/7 Space News .
TECH SPACE
Marine animals inspire new approaches to structural topology optimization
by Georgia Parmelee
Atlanta GA (SPX) Apr 21, 2021

Co-author and Georgia Tech Prof. Glaucio Paulino, alongside co-author and Ph.D. student Emily Sanders.

A mollusk and shrimp are two unlikely marine animals that are playing a very important role in engineering. The bodies of both animals illustrate how natural features, like the structures of their bones and shells, can be borrowed to enhance the performance of engineered structures and materials, like bridges and airplanes. This phenomenon, known as biomimetics, is helping advance structural topology research, where the microscale features found in natural systems are being mimicked.

In a recent paper published by researchers at the Georgia Institute of Technology and the Pontifical Catholic University of Rio de Janeiro (Brazil), a new approach to structural topology optimization is outlined that unifies both design and manufacturing to create novel microstructures, with potential applications ranging from enhanced facial implants for cranial reconstruction to improved ways to get materials into space for planetary exploration.

"With traditional structural topology optimization, we use algorithms to determine the ideal layout of a structure - one that maximizes structural efficiency and requires fewer material resources," said Emily Sanders, a Ph.D. student in the School of Civil and Environmental Engineering at Georgia Tech, and co-author of the paper. "Our new research takes that a step further by introducing structural hierarchy, microarchitectures, and spatially-varying mechanical properties to enable different types of functionality like those observed in the cuttlefish and mantis shrimp."

The properties of both animals inspired the new framework for designing hierarchical, spatially-varying microstructures and required the researchers to build on existing technologies used to create 3D-printed structures.

"In our recent work, we've developed technology that includes new algorithms and computations that are the enablers of a hierarchical microstructure," said Glaucio Paulino, Raymond Allen Jones chair and professor in the School of Civil and Environmental Engineering at Georgia Tech, co-author of the paper and recent inductee to the National Academy of Engineering. "We can then input that information into 3D printers and create structures with tremendous amounts of details. After studying the porous, layered cuttlefish bone that has extremely adaptive properties, we've been able to apply that to new structures and materials like the ones shown in our paper."

For Paulino and his team, he hopes this new research will be applied to his earlier work in cranial reconstruction on cancer patients and those who have had massive facial injuries and bone loss.

"Now, we can 3D print craniofacial implants that have been designed using topology optimization and provide the framework for tissue re-growth," said Paulino. "Ideally when combined with the spatially-varying microarchitectures we've recently developed, the implants would more closely mimic the porous nature of the human bone and would promote the growth of the bone itself inside the scaffold. As the bone grows, the scaffold biodegrades, and if everything goes well, in the end the scaffold is gone, and the patient has new bones in the right places."

Design and Manufacturing
As Sanders explains it, there are two aspects being investigated in this paper that advance the study of topology optimization: design and manufacturing. The first goal is to design an optimal macro geometry and at the same time, optimally distribute spatially-varying micro geometries within, in order to meet performance objectives. In this paper, the researchers were looking for maximally stiff parts with limited volume, much like the mantis shrimp hammer claw and they achieved a high level of complexity that mimics nature at both scales.

The second goal is related to the manufacturing needed to create the structures. With additive manufacturing - or 3D printing - researchers can manufacture structures with complex geometries. But with the research team's introduction of spatially-varying microstructures, the printing becomes increasingly difficult.

"The more complex 3D data that we would have to send to the printer is so enormous that it's prohibitive," said Sanders. "So, we had to find a new way to communicate that information to the printer. Now, we communicate only 2D information, embedding the microstructures directly in 2D slices of the structure. At the end, the printer combines the slices to get the structure. It's much more efficient."

"What Emily did with manufacturing closes the loop," said Paulino. "We deliver on the design, mathematics, and algorithms. And we connect topology optimization with the additive manufacturing at both macro and micro levels."

Future Applications
When considering the future of the advancements made to structural topology optimization in this paper, Paulino and Sanders both see applications in biomaterials, as well as magnetic properties designed for space exploration.

For Paulino's work that continues in cranial reconstruction, he envisions interdisciplinary collaborations between engineering, chemistry and biology to develop biocompatible materials and architectures for medical use.

"We're not there yet, but this work is a step in the right direction," said Paulino. "Eventually, we'll be able to print biocompatible materials. This research with spatially-varying microarchitectures should enable the optimal design and manufacturing for biomaterial applications."

Regarding space exploration, the research could impact the creation of synthetic structures and systems with functionality, like magnetic material assemblages that could be actuated on demand by means of applied magnetic fields.

"An important aspect of this work is that it opened up our design space so that we can have spatially-varying properties, which enables us to do things we couldn't before," said Sanders.

Paulino goes on to explain that with space travel, each pound of material sent into space has an enormous cost, so the amount of material and volume brought on space missions is very limited.

"The way I see our manufacturing working in space is you print in place, potentially using printing materials from the foreign planet itself," said Paulino. "You can bring the additive printing capabilities to Mars and print structures with the properties you need when you get there. You print only what you need versus bringing everything you think you might need. In space, you want everything you do to be optimized."

Inspired by animals and how they function in nature, Paulino and his team have evolved topology optimization once again, this time with the new design and manufacturing of spatially-varying, hierarchical structures. And, soon, practical applications in biomedicine and space exploration are sure to follow.


Related Links
Georgia Institute Of Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
EU slaps tariffs on China aluminium products
Brussels (AFP) April 12, 2021
The EU on Monday slapped tariffs on certain aluminium imports from China that Brussels said were sold at artificially low prices in Europe. The provisional tariffs came after complaints by European aluminium producers that said cheap chinese imports were putting them out of business. The tariffs were decided after an investigation by the European Commission, which handles trade matters for the bloc's 27 member states and were announced in the EU's official journal. China is widely accused of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russia space chief blasts US for omitting Gagarin in post

Liftoff! Pioneers of space

All aboard! Next stop space...

Russians celebrate 60 years since Gagarin's spaceflight

TECH SPACE
Blue Origin rocket test will monitor capsule access by humans

Ariane 6 pre-flight 'plumbing' tests

Roscosmos has lost several contracts for satellite launches due to 'mean' US sanctions

Rocket Lab to recover Electron Booster on next mission

TECH SPACE
Two paths to first flight on Mars

NASA aims for historic helicopter flight on Mars

Work progresses toward Ingenuity's First Flight on Mars

NASA delays Mars helicopter flight again for software update

TECH SPACE
Chinese rocket for space station mission arrives at launch site

Ningbo to build $3.05b rocket launchpad site

China advances space cooperation in 2020: blue book

China selects astronauts for space station program

TECH SPACE
SpaceX launches 60 Starlink communications satellites

SpaceFund Venture Capital Announces First Close of Second Fund

Nine global space startups to join Australia's first space dedicated incubator program

New study finds satellites contribute significant light pollution to night skies

TECH SPACE
Fornite maker Epic Games valued at $28.7 bn in funding round

$69 million digital art buyer shines light on 'NFT' boom

EU slaps tariffs on China aluminium products

US adds Chinese supercomputer centers to export blacklist

TECH SPACE
Amounts of organic molecules in planetary systems differ from early on

Long-awaited review reveals journey of water from interstellar clouds to habitable worlds

Scientists shed more light on molecules linked to life on other planets

Crustal mineralogy drives microbe diversity beneath Earth's surface

TECH SPACE
New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly

First X-rays from Uranus Discovered

SwRI scientists discover a new auroral feature on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.