. 24/7 Space News .
ENERGY TECH
Making fuel cells for a fraction of the cost
by Staff Writers
Riverside CA (SPX) Feb 03, 2018

UC Riverside researchers have developed an inexpensive, efficient catalyst material for polymer electrolyte membrane (PEM) fuel cells which are among the most promising fuel cell types to power cars and electronics.

Fuel cells have the potential to be a clean and efficient way to run cars, computers, and power stations, but the cost of producing them is limiting their use. That's because a key component of the most common fuel cells is a catalyst made from the precious metal platinum.

In a paper published in Small, researchers at the University of California, Riverside, describe the development of an inexpensive, efficient catalyst material for a type of fuel cell called a polymer electrolyte membrane fuel cell (PEMFC), which turns the chemical energy of hydrogen into electricity and is among the most promising fuel cell types to power cars and electronics.

The catalyst developed at UCR is made of porous carbon nanofibers embedded with a compound made from a relatively abundant metal such as cobalt, which is more than 100 times less expensive than platinum. The research was led by David Kisailus, the Winston Chung Endowed Professor in Energy Innovation in UCR's Marlan and Rosemary Bourns College of Engineering.

Fuel cells, which are already being used by some carmakers, offer advantages over conventional combustion technologies, including higher efficiency, quieter operation and lower emissions. Hydrogen fuel cells emit only water.

Like batteries, fuel cells are electrochemical devices that comprise a positive and negative electrode sandwiching an electrolyte. When a hydrogen fuel is injected onto the anode, a catalyst separates the hydrogen molecules into positively charged particles called protons and negatively charged particles called electrons.

The electrons are directed through an external circuit, where they do useful work, such as powering an electric motor, before rejoining the positively charged hydrogen ions and oxygen to form water.

A critical barrier to fuel cell adoption is the cost of platinum, making the development of alternative catalyst materials a key driver for their mass implementation.

Using a technique called electrospinning, the UCR researchers made paper-thin sheets of carbon nanofibers that contained metal ions - either cobalt, iron or nickel. Upon heating, the ions formed ultrafine metal nanoparticles that catalyzed the transformation of carbon into a high-performance graphitic carbon.

Subsequently, the metal nanoparticles and residual nongraphitic carbon were oxidized, leading to a highly porous and useful network of metal oxide nanoparticles dispersed in a porous network of graphite.

Kisailus and his team, collaborating with scientists at Stanford University, determined that the new materials performed as good as the industry standard platinum-carbon systems, but at a fraction of the cost.

"The key to the high performance of the materials we created is the combination of the chemistry and fiber processing conditions," Kisailus said.

"The remarkable electrochemical properties were primarily attributed to the synergistic effects obtained from the engineering of the metal oxide with exposed active sites and the 3D hierarchical porous graphitic structure."

Kisailus said an added benefit of the catalytic nanocomposite was that its graphitic fiber nature provided additional strength and durability, which would enable it to serve as both a fuel cell catalyst and potentially as a structural component.

"An important challenge in making high-performance vehicles is reducing weight, both from the body of the vehicle as well as extra weight from the battery or fuel cell, without affecting safety or performance," he said.

"The material we created may enable automakers to turn structural components, such as the hood or the chassis, into functional elements that help power cars."

The title of the paper is "Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites." The lead authors are Hongjie Tang, a post-doctoral student in Kisailus' lab at UCR, and Wei Chen from Stanford University. Other contributors include Jiangyan Wang from Stanford University, as well as Thomas Dugger and Luz Cruz from UCR.


Related Links
University of California - Riverside
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Coupling experiments to theory to build a better battery
Berkeley CA (SPX) Feb 01, 2018
Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur batteries become unstable over time, and their electrodes deteriorate, limiting widespread adoption. Now, a team of researchers led by scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have reported that a new lithium-sul ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Amazon opens plant-filled "The Spheres" buildings

NASA-JAXA Joint Statement on Space Exploration

Space station spacewalk postponed until mid-February

Microbes may help astronauts transform human waste into food

ENERGY TECH
Falcon Heavy rocket ready for fueling, static fire test

SpaceX CEO Sets Date for First Falcon Heavy Rocket Launch

Rocket Lab successfully circularizes orbit with new Electron kick stage

Ariane 5 delivers SES-14 and Al Yah 3 to orbit

ENERGY TECH
NASA tests power system to support manned missions to Mars

European-Russian space mission steps up the search for life on Mars

Opportunity prepares software update as Sol 5000 approaches

NASA's Next Mars Lander Spreads its Solar Wings

ENERGY TECH
China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

China to select astronauts for its space station

ENERGY TECH
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

ENERGY TECH
Quantum control

Virtual reality goes magnetic

A frequency-doubling unit for transportable lasers

Updates on recovery attempts for NASA IMAGE mission

ENERGY TECH
First Light for Planet Hunter ExTrA at La Silla

A new 'atmospheric disequilibrium' could help detect life on other planets

Johns Hopkins scientist proposes new limit on the definition of a planet

NASA Poised to Topple a Planet-Finding Barrier

ENERGY TECH
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.