24/7 Space News
EXO WORLDS
MIT engineers find a way to protect microbes from extreme conditions
illustration only
MIT engineers find a way to protect microbes from extreme conditions
by Anne Trafton | MIT News
Boston MA (SPX) Jul 08, 2024

Microbes that are used for health, agricultural, or other applications need to be able to withstand extreme conditions, and ideally the manufacturing processes used to make tablets for long-term storage. MIT researchers have now developed a new way to make microbes hardy enough to withstand these extreme conditions.

Their method involves mixing bacteria with food and drug additives from a list of compounds that the FDA classifies as "generally regarded as safe." The researchers identified formulations that help to stabilize several different types of microbes, including yeast and bacteria, and they showed that these formulations could withstand high temperatures, radiation, and industrial processing that can damage unprotected microbes.

In an even more extreme test, some of the microbes recently returned from a trip to the International Space Station, coordinated by Space Center Houston Manager of Science and Research Phyllis Friello, and the researchers are now analyzing how well the microbes were able to withstand those conditions.

"What this project was about is stabilizing organisms for extreme conditions. We're thinking about a broad set of applications, whether it's missions to space, human applications, or agricultural uses," says Giovanni Traverso, an associate professor of mechanical engineering at MIT, a gastroenterologist at Brigham and Women's Hospital, and the senior author of the study.

Miguel Jimenez, a former MIT research scientist who is now an assistant professor of biomedical engineering at Boston University, is the lead author of the paper, which appears in Nature Materials.

Surviving extreme conditions
About six years ago, with funding from NASA's Translational Research Institute for Space Health (TRISH), Traverso's lab began working on new approaches to make helpful bacteria such as probiotics and microbial therapeutics more resilient. As a starting point, the researchers analyzed 13 commercially available probiotics and found that six of these products did not contain as many live bacteria as the label indicated.

"What we found was that, perhaps not surprisingly, there is a difference, and it can be significant," Traverso says. "So then the next question was, given this, what can we do to help the situation?"

For their experiments, the researchers chose four different microbes to focus on: three bacteria and one yeast. These microbes are Escherichia coli Nissle 1917, a probiotic; Ensifer meliloti, a bacterium that can fix nitrogen in soil to support plant growth; Lactobacillus plantarum, a bacterium used to ferment food products; and the yeast Saccharomyces boulardii, which is also used as a probiotic.

When microbes are used for medical or agricultural applications, they are usually dried into a powder through a process called lyophilization. However, they can not normally be made into more useful forms such as a tablet or pill because this process requires exposure to an organic solvent, which can be toxic to the bacteria. The MIT team set out to find additives that could improve the microbes' ability to survive this kind of processing.

"We developed a workflow where we can take materials from the 'generally regarded as safe' materials list from the FDA, and mix and match those with bacteria and ask, are there ingredients that enhance the stability of the bacteria during the lyophilization process?" Traverso says.

Their setup allows them to mix microbes with one of about 100 different ingredients and then grow them to see which survive the best when stored at room temperature for 30 days. These experiments revealed different ingredients, mostly sugars and peptides, that worked best for each species of microbe.

The researchers then picked one of the microbes, E. coli Nissle 1917, for further optimization. This probiotic has been used to treat "traveler's diarrhea," a condition caused by drinking water contaminated with harmful bacteria. The researchers found that if they combined caffeine or yeast extract with a sugar called melibiose, they could create a very stable formulation of E. coli Nissle 1917. This mixture, which the researchers called formulation D, allowed survival rates greater than 10 percent after the microbes were stored for six months at 37 degrees Celsius, while a commercially available formulation of E. coli Nissle 1917 lost all viability after only 11 days under those conditions.

Formulation D was also able to withstand much higher levels of ionizing radiation, up to 1,000 grays. (The typical radiation dose on Earth is about 15 micrograys per day, and in space, it's about 200 micrograys per day.)

The researchers don't know exactly how their formulations protect bacteria, but they hypothesize that the additives may help to stabilize the bacterial cell membranes during rehydration.

Stress tests
The researchers then showed that these microbes can not only survive harsh conditions, they also maintain their function after these exposures. After Ensifer meliloti were exposed to temperatures up to 50 degrees Celsius, the researchers found that they were still able to form symbiotic nodules on plant roots and convert nitrogen to ammonia.

They also found that their formulation of E. coli Nissle 1917 was able to inhibit the growth of Shigellaflexneri, one of the leading causes of diarrhea-associated deaths in low- and middle-income countries, when the microbes were grown together in a lab dish.

Last year, several strains of these extremophile microbes were sent to the International Space Station, which Jimenez describes as "the ultimate stress test."

"Even just the shipping on Earth to the preflight validation, and storage until flight are part of this test, with no temperature control along the way," he says.

The samples recently returned to Earth, and Jimenez' lab is now analyzing them. He plans to compare samples that were kept inside the ISS to others that were bolted to the outside of the station, as well as control samples that remained on Earth.

"This work offers a promising approach to enhance the stability of probiotics and/or genetically engineered microbes in extreme environments, such as in outer space, which could be used in future space missions to help maintain astronaut health or promote sustainability, such as in promoting more robust and resilient plants for food production," says Camilla Urbaniak, a research scientist at NASA's Jet Propulsion Laboratory, who was not involved in the study.

The research was funded by NASA's Translational Research Institute for Space Health, Space Center Houston, MIT's Department of Mechanical Engineering, and by 711 Human Performance Wing and the Defense Advanced Research Projects Agency.

Other authors of the paper include Johanna L'Heureux, Emily Kolaya, Gary Liu, Kyle Martin, Husna Ellis, Alfred Dao, Margaret Yang, Zachary Villaverde, Afeefah Khazi-Syed, Qinhao Cao, Niora Fabian, Joshua Jenkins, Nina Fitzgerald, Christina Karavasili, Benjamin Muller, and James Byrne.

Research Report:"Synthetic extremophiles: Species-specific formulations for microbial therapeutics and beyond"

Related Links
MIT Department of Mechanical Engineering
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Organic material from Mars reveals the likely origin of life's building blocks
Berlin, Germany (SPX) Jul 02, 2024
Two samples from Mars together deliver the "smoking gun" in a new study showing the origin of Martian organic material. The study presents solid evidence for a prediction made over a decade ago by University of Copenhagen researchers that could be key to understanding how organic molecules, the foundation of life, were first formed here on Earth. In a meteor crater on the red planet, a solitary robot is moving about. Right now it is probably collecting soil samples with a drill and a robotic arm, ... read more

EXO WORLDS
Space Renaissance International Achieves Observer Status At U.N. COPUOS

HERA crew complete 45-day simulated journey to Mars

MIT scientists develop way to toughen up 'good' bacteria, extend shelf life

NASA Seeks Feedback on Requirements for New Commercial Space Stations

EXO WORLDS
Orion and SLS Gearing Up for Major Artemis Missions

SpaceX Secures NASA Contract for COSI Space Telescope Launch

Artemis IV Set to Launch with Modernized RS-25 Engines

Germany's Integral Role in the Ariane 6 Launch Program

EXO WORLDS
Europe's Earth Return Orbiter Advances to Next Development Stage

Crew inside NASA's Mars habitat simulator to exit after more than a year

Martian Atmosphere Unveiled Through Innovative Use of Existing Technology

'Ready to come out?' Scientists reemerge after year 'on Mars'

EXO WORLDS
Shenzhou XVII Crew Shares Post-Mission Insights with Media

Shenzhou XVIII Crew Successfully Completes Second Spacewalk

Chinese Scientists Develop Novel Rosa Roxburghii Varieties via Space Breeding

Private companies key players in China's space development

EXO WORLDS
Ovzon 3 Satellite Commences Commercial Service

SpaceX Successfully Launches Turkey's First Home-Grown Communications Satellite

NASA Shares Use Requirements With Commercial Destination Partners

Leaf Space enables Sateliot to scale without significant capex in the ground segment

EXO WORLDS
Sidus Space and Stennis complete key objectives of in-space payload mission

Cosmic Shielding protects Nvidia Ai hardware in upcoming Spacex launch

Amazon to build 'top secret' cloud for Australia's spies

Icesat-2 Resumes Data Collection After Solar Storms

EXO WORLDS
Nearby Exoplanet Found with Hydrogen Sulfide Atmosphere

MIT engineers find a way to protect microbes from extreme conditions

Search for extraterrestrial life focuses on detecting exoplanet atmospheres

Organic material from Mars reveals the likely origin of life's building blocks

EXO WORLDS
Subaru Telescope Discovers New Objects Beyond the Kuiper Belt

NASA's Juno Observes Lava Lakes on Jupiter's Moon Io

Understanding Cyclones on Jupiter Through Oceanography

Unusual Ion May Influence Uranus and Neptune's Magnetic Fields

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.