24/7 Space News
Life on Earth didn't arise as described in textbooks
file illustration only
Life on Earth didn't arise as described in textbooks
by Staff Writers
Copenhagen, Denmark (SPX) Jul 19, 2023

No, oxygen didn't catalyze the swift blossoming of Earth's first multicellular organisms. The result defies a 70-year-old assumption about what caused an explosion of oceanic fauna hundreds of millions of years ago.

Between 685 and 800 million years ago, multicellular organisms began to appear in all of Earth's oceans during what's known as the Avalon explosion, a forerunner era of the more famed Cambrian explosion. During this era, sea sponges and other bizarre multicellular organisms replaced small single-celled amoeba, algae and bacteria, which until then, had had run of the planet for more than 2 billion years.

Up until now, it was believed that increased oxygen levels triggered the evolutionary arrival of more advanced marine organisms. This is being disproved by University of Copenhagen researchers working together with colleagues from Woods Hole Oceanographic Institute, the University of Southern Denmark and Lund University, among others.

By studying the chemical composition of ancient rock samples from an Omani mountain range, the researchers have been able to "measure" oxygen concentrations in the world's oceans from when these multicellular organisms appeared. Defying expectations, the result shows that Earth's oxygen concentrations had not increased. Indeed, levels remained 5-10 times lower than today, which is roughly how much oxygen there is at twice the height of Mount Everest.

"Our measurements provide a good picture of what average oxygen concentrations were in the world's oceans at the time. And it's apparent to us that there was no major increase in the amount of oxygen when more advanced fauna began to evolve and dominate Earth. In fact, there was somewhat of a slight decrease," says Associate Professor Christian J. Bjerrum, who has been quantifying the conditions surrounding the origin of life for the past 20 years.

Revises our understanding of life's origins
The new result puts to rest a 70-year research story that advances the centrality of higher oxygen concentrations in the development of more advanced life on our planet.

"The fact that we now know, with a high degree of certainty, that oxygen didn't control the development of life on Earth provides us with an entirely new story about how life arose and what factors controlled this success," says the researcher, adding:

"Specifically, it means that we need to rethink a lot of the things that we believed to be true from our childhood learning. And textbooks need to be revised and rewritten."

There remains much that the researchers don't know, as well as and a plethora of controversy. Therefore, Bjerrum hopes that the new result can spur other researchers around the world to reconsider their previous results and data in a new light.

"There are many research sections around the world, including in the United States and China, that have done lots of research on this topic, whose earlier results may shed important new details if interpreted on the basis that oxygen didn't drive the development of life," says the researcher.

Absence of oxygen may have aided development
So, if not extra oxygen, what triggered the era's explosion of life? Perhaps the exact opposite, explains the researcher:

"It's interesting that the explosion of multicellular organisms occurs at a time with low concentrations of atmospheric and oceanic oxygen. That indicates that organisms benefited from lower levels of oxygen and were able to develop in peace, as the water chemistry protected their stem cells naturally," says Christian J. Bjerrum.

According to the researcher, the same phenomenon has been studied in cancer research, in the stem cells of humans and other animals. Here, colleagues at Lund University observed that low oxygen levels are crucial for keeping stem cells under control until an organism decides that the cell ought to develop into a specific type of cell, such as a muscle cell.

"We know that animals and humans must be able to maintain low concentrations of oxygen in order to control their stem cells, and in so doing, develop slowly and sustainably. With too much oxygen, the cells will develop, and in the worst case, mutate wildly and perish. It is far from inconceivable that this mechanism applied back then," concludes Christian J. Bjerrum.

Fossils from Oman
In the new study, the researchers analysed rock samples from, among other places, the Oman Mountains in northern Oman. While quite high and very dry today, the mountains were on the seabed during the Avalon explosion's rapid blossoming of organism diversity.

The researchers have had their findings confirmed in fossils from three different mountain ranges around the world: the Oman Mountains (Oman), Mackenzie Mountains (NW Canada) and the Yangtze Gorges area of South China.

Over time, clay and sand from land are washed into the sea, where they settle into layers on the seabed. By going down through these layers and examining their chemical composition, researchers can get a picture of ocean chemistry at a particular geologic time.

The analyses were performed using Thallium and Uranium isotopes found in the mountains, which the researchers were able to extract data from, and in doing so, calculate oxygen levels from many hundreds of millions of years ago.

Research Report:Widespread seafloor anoxia during generation of the Ediacaran Shuram carbon isotope excursion

Related Links
University of Copenhagen - Faculty of Science
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
MSU studies nutrients that may have fertilized ancient photosynthesis in Earth's oceans
East Lansing MI (SPX) Jul 14, 2023
The Earth is 4.5 billion years old, and, during that time, it has seen some things. Life has been a part of most of that history, but what life has looked like has changed dramatically over the eons. Deciphering how life worked on this planet during its different epochs is one of the things that Dalton Hardisty works on at Michigan State University. In fact, he's part of an international research collaboration that recently published work in the prestigious journal Nature, sharing a new appr ... read more

On space, poll shows most Americans support NASA's role, U.S. presence

Rensselaer researchers using drop module for advanced protein studies on ISS

Virgin Galactic's next spaceflight will include sweepstakes winners

Euclid's large halo around indefinitely small point

AROBS Engineering Takes Lead Role in Space Rider Project Software Verification and Validation

Protecting Space Assets through Innovation: Hyperspace Challenge 2023

Rocket Lab delivers seven satellites to orbit with Electron Rocket

SpaceX aborts launch of Starlink satellites

Senate expresses 'significant concerns' over NASA's Mars sample-retrieval plan

The Lion's Mane: Sols 3892-3893

The clays of Mawrth Vallis

It's all still Rock and Roll to Us: Sols 3889-3891

Shenzhou XVI crew set to conduct their first EVA

Commercial space projects expected to provide more services in China

Timeline unveiled for China's advanced manned spacecraft's inaugural flight

China's Shenzhou XVI astronauts conduct fluid physics experiments

Future of Satellite Internet: OneWeb vs Starlink

SpaceX launches 54 Starlink satellites, ties record for first-stage returns

ESA moves ahead with In-Orbit Servicing missions

CASIC plans new satellite network by 2030

Simulating Aeolus's return: mission control feels the heat

Boeing's Millennium Space Systems amplifies small satellite production

Flat sapphire windows for hypersonic aircraft and weapons

Wind River VxWorks software chosen for Astroscale's Space Debris Solution ELSA-M

PSI's David Grinspoon Appointed to New NASA Post

New study reveals Roman Telescope could find 400 Earth-mass rogue planets

Life on Earth didn't arise as described in textbooks

MSU studies nutrients that may have fertilized ancient photosynthesis in Earth's oceans

SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.