. 24/7 Space News .
IRON AND ICE
Late-time small-body disruptions can protect the Earth
by Michael Padilla for Livermore News
Livermore CA (SPX) Oct 07, 2021

The hydro simulation in Spheral that provided the basis for the analysis: 1 Megaton at a few meters standoff distance from a 100-meter diameter asteroid (with Bennu shape). Colors denote velocities. The legend is cm/us, which is equivalent to 10 km/s.

If an asteroid is determined to be on an Earth-impacting trajectory, scientists typically want to stage a deflection, where the asteroid is gently nudged by a relatively small change in velocity, while keeping the bulk of the asteroid together.

A kinetic impactor or a standoff nuclear explosion can achieve a deflection. However, if the warning time is too short to stage a successful deflection, another option is to couple a lot of energy to the asteroid and break it up into many well-dispersed fragments. This approach is called disruption and it is often what people think of when they picture planetary defense. While scientists would prefer to have more warning time, they need to be prepared for any possible scenario, as many near-Earth asteroids remain undiscovered.

Now, new research takes a closer look into at how different asteroid orbits and different fragment velocity distributions affect the fate of the fragments, using initial conditions from a hydrodynamics calculation, where a 1-Megaton-yield device was deployed a few meters off the surface of a Bennu-shaped, 100-meter diameter asteroid (1/5 the scale of Bennu, a near-Earth asteroid discovered in 1999). See the video.

The work is featured in a paper published in Acta Astronautica with lead author Patrick King, a former Lawrence Livermore National Laboratory Graduate Scholar Program fellow who worked with LLNL's Planetary Defense group on this research as part of his Ph.D. thesis. King currently works at the Johns Hopkins University Applied Physics Laboratory (JHUAPL) as a physicist in the Space Exploration Sector. Co-authors of the paper include Megan Bruck Syal, David Dearborn, Robert Managan, Michael Owen and Cody Raskin.

The results highlighted in the paper are reassuring: for all five asteroid orbits considered, carrying out the disruption just two months before the Earth impact date was able to reduce the fraction of impacting mass by factor of 1,000 or more (99.9 percent of the mass misses Earth). For a larger asteroid, the dispersal would be less robust, but even dispersal velocities reduced by an order of magnitude would result in 99 percent of the mass missing Earth, if disruption is staged at least six months ahead of the impact date.

"One of the challenges in assessing disruption is that you need to model all of the fragment orbits, which is generally far more complicated than modeling a simple deflection," King said. "Nevertheless, we need to try to tackle these challenges if we want to assess disruption as a possible strategy."

King said the principal finding of the work was that nuclear disruption is a very effective defense of last resort. "We focused on studying 'late' disruptions, meaning that the impacting body is broken apart shortly before it impacts," he said. "When you have plenty of time - typically decade-long timescales - it is generally preferred that kinetic impactors are used to deflect the impacting body."

Kinetic impactors have many advantages: for one, the technique is well-known and is being tested on real missions, such as the DART mission, and is capable of handling a wide range of possible threats if you have enough time. However, they do have some limitations, so it is important that if an actual emergency does arise that multiple options are available to deal with a threat, including some ways that can handle pretty short warning times.

Owen said this paper is critically important for understanding the consequences and requirements for disrupting a hazardous asteroid approaching Earth. Owen wrote the software, called Spheral, that was used to model the nuclear disruption of the original asteroid, following the detailed physics of shocking and breaking up the original rocky asteroid and capturing the properties of the resulting fragments. From there, the team used Spheral to follow the gravitational evolution of the fragment cloud, accounting for the effects of the fragments on one another as well as the gravitational influence of the sun and planets.

"If we spotted a hazardous object destined to strike the Earth too late to safely divert it, our best remaining option would be to break it up so thoroughly the resulting fragments would largely miss the Earth," he said. "This is a complicated orbital question though - if you break up an asteroid into pieces, the resulting cloud of fragments will each pursue their own path around the sun, interacting with each other and the planets gravitationally. That cloud will tend to stretch out into a curved stream of fragments around the original path the asteroid was on. How quickly those pieces spread out (combined with how long until the cloud crosses Earth's path) tells us how many will strike the Earth."

Bruck Syal said the work addresses a major goal defined in the White House OSTP's National Near-Earth Object (NEO) Preparedness Strategy and Action Plan: to improve NEO modeling, prediction and information integration.

"Our group continues to refine our modeling approaches for nuclear deflection and disruption, including ongoing improvements to X-ray energy deposition modeling, which sets the initial blowoff and shock conditions for a nuclear disruption problem," she said. "This latest paper is an important step in demonstrating how our modern multiphysics tools can be used to simulate this problem over multiple relevant physics regimes and timescales."

Research paper


Related Links
DART mission
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Rare micrometeorite may have originated from a Ceres-like asteroid
Tempe AZ (SPX) Oct 06, 2021
A micrometeorite, called TAM19B-7, may have originated from a Ceres-like asteroid, according to a recent study conducted by researchers Maitrayee Bose and Victoria Froh of Arizona State University, Martin Suttle of The Open University, U.K., and Luigi Folco, of the University of Pisa, Italy. They will be presenting the results of their study at the 53rd annual American Astronomical Society's Division for Planetary Sciences conference, being held virtually Oct. 3-8. Micrometeorites are tiny g ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Russian film crew says shooting in space a 'huge challenge'

US firm sees 'exciting' moment as space tourism booms

Russian rocket tests briefly destabilise space station

Humidity caused corrosion of Starliner capsule valves, Boeing, NASA say

IRON AND ICE
Successful static firing test with DLR involvement

China says recent test was spacecraft not missile

China describes hypersonic test as a space vehicle trial

Japanese billionaire Maezawa 'not afraid' ahead of ISS launch

IRON AND ICE
Hear sounds from Mars captured by Perseverance Rover

Life on Mars: simulating Red Planet base in Israeli desert

NASA plans careful restart for Mars helicopter after quiet period

NASA selects crew for simulated trip to a Mars Moon

IRON AND ICE
China's 'space dream': A Long March to the Moon and beyond

Chinese astronaut bridges gender gap

China's longest-yet crewed space mission impressive, expert says

Test conducted to verify spacecraft technology, FM says

IRON AND ICE
Conclusions from Satellite Constellations 2 Released

Eutelsat raises its shareholding in OneWeb

Over half OneWeb constellation now deployed

Russian Soyuz rocket launches 36 new UK satellites

IRON AND ICE
Laser Communications Relay Demonstration gears up for launch

Three hours to save Integral

New model simplifies orbital radar trade-off studies for environmental monitoring

Concrete: the world's 3rd largest CO2 emitter

IRON AND ICE
Scientists find evidence the early solar system harbored a gap between its inner and outer regions

Researchers call for armchair astronomers to help find unknown hidden worlds

NASA scientist looks to AI, lensing to find masses of free-floating planets

First planet to orbit 3 Stars discovered

IRON AND ICE
The unusual magnetic fields of Uranus and Neptune

Hubble Finds Evidence of Persistent Water Vapor in One Hemisphere of Europa

SwRI scientists confirm decrease in Pluto's atmospheric density

Hubble shows winds in Jupiter's Great Red Spot are speeding up









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.