24/7 Space News
Laser tests reveal new insights into key mineral for super-Earths
illustration only
Laser tests reveal new insights into key mineral for super-Earths
by Roberto Molar Candanosa for JHU News
Baltimore MD (SPX) Jun 13, 2024

Scientists have for the first time observed how atoms in magnesium oxide morph and melt under ultra-harsh conditions, providing new insights into this key mineral within Earth's mantle that is known to influence planet formation.

High-energy laser experiments-which subjected tiny crystals of the mineral to the type of heat and pressure found deep inside a rocky planet's mantle-suggest the compound could be the earliest mineral to solidify out of magma oceans in forming "super-Earth" exoplanets.

"Magnesium oxide could be the most important solid controlling the thermodynamics of young super-Earths," said June Wicks, an assistant professor of Earth and Planetary Sciences at Johns Hopkins University who led the research. "If it has this very high melting temperature, it would be the first solid to crystallize when a hot, rocky planet starts to cool down and its interior separates into a core and a mantle."

They suggest that the way magnesium oxide transitions from one form to another could have important implications for the factors that control whether a young planet will be a snowball or a molten rock, develop water oceans or atmospheres, or have a mixture of those features.

"In terrestrial super-Earths, where this material is going to be a big component of the mantle, its transformation is going to contribute significantly to how quickly heat moves in the interior, which is going to control how the interior and the rest of the planet form and deform over time," Wicks said. "We can think of this as a proxy for interiors of these planets, because it's going to be the material that controls its deformation, one of the most important building blocks of rocky planets."

Larger than Earth but smaller than giants like Neptune or Uranus, super-Earths are key targets in exoplanet searches because they are commonly found among other solar systems in the galaxy. While the composition of these planets can vary from gas to ice or water, rocky super-Earths are expected to contain significant amounts of magnesium oxide that can influence the planet's magnetic field, volcanism, and other key geophysics like they do on Earth, Wicks said.

To mimic the extreme conditions this mineral might sustain during planet formation, Wick's team subjected small samples to ultra-high pressures using the Omega-EP laser facility at the University of Rochester's Laboratory for Laser Energetics. The scientists also shot X-rays and recorded how those light rays bounced off the crystals to track how their atoms rearranged in response to the increasing pressures, specifically noting at what point they transformed from a solid to a liquid.

When squeezed extremely hard, the atoms of materials like magnesium oxide change their arrangement to sustain the crushing pressures. That's why the mineral transitions from a rock salt "phase" resembling table salt to a different configuration like that of another salt called cesium chloride as pressure increases. This makes for a transformation that can affect a mineral's viscosity and impact on a planet as it comes of age, Wicks said.

The team's results show that magnesium oxide can exist in both of its phases at pressures ranging from 430 to 500 gigapascals and temperatures of around 9,700 Kelvin, nearly twice as hot as the surface of the sun. The experiments also show that the highest pressures the mineral can withstand before melting completely are upward of 600 gigapascals, about 600 times the pressure one would feel in the deepest trenches of the ocean.

"Magnesium oxide melts at a much higher temperature than any other material or mineral. Diamonds may be the hardest materials, but this is what will melt last," Wicks said. "When it comes to extreme materials in young planets, magnesium oxide is likely going to be solid, whereas everything else that will be hanging out down there in the mantle is going to be turned to liquid."

The study showcases the stability and simplicity of magnesium oxide under extreme pressures and could help scientists develop more accurate theoretical models to probe key questions about the behavior of this and other minerals within rocky worlds like Earth, Wicks said.

"The study is a love letter to magnesium oxide, because it's amazing that it has the highest temperature melting point that we know of-at pressures beyond the center of Earth-and it still behaves like a regular salt," Wicks said. "It's just a beautiful, simple salt, even at these record pressures and temperatures."

Research Report:B1-B2 transition in shock-compressed MgO

Related Links
Department of Earth and Planetary Sciences at JJU
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
NASA satellite detects smaller object in black hole pair for the first time
London, UK (SPX) Jun 12, 2024
Several international research groups have confirmed that two black holes exist at the center of the distant galaxy OJ 287, a theory first suggested by astronomers at the University of Turku, Finland. A new study shows that satellite observations conducted in 2021 revealed the smaller black hole of the pair for the first time. In 2021, NASA's exoplanet-hunting satellite was pointed towards the galaxy OJ 287 to help astronomers confirm the theory initially proposed by researchers at the University ... read more

Kayhan Space Launches Comprehensive Spaceflight Intelligence Platform

Voyager 1 Resumes Full Science Operations

NASA delays return of Starliner astronauts from space station

NASA cancels ISS spacewalk after 'spacesuit discomfort'

NASA pushes Starliner return to July

ASTRA 1P Launched on SpaceX's Falcon 9 Rocket

SpaceX deploys another round of Internet satellites

Rocket Lab Signs Largest Electron Launch Deal with Synspective

NASA's Perseverance Reaches Key Scientific Target in Ancient Riverbed

Marsquakes may help reveal whether liquid water exists underground on red planet

NASA Observes Mars Illuminated During Major Solar Storm

Water frost discovered on Mars' tallest volcanoes

Hainan Launch Center Completes Construction for First Mission

Ten make the cut for China's fourth batch of astronauts

China announces first astronaut candidates from Hong Kong, Macau

China Open to Space Collaboration with the US

Ovzon 3 satellite reaches geostationary orbit

SES completes euro 3 billion acquisition financing syndication

Iridium Expands Satellite Time and Location Service to Europe and Asia Pacific

Apex secures $95M in Series B Funding to Scale Satellite Bus Production

Space Systems Command Grants Contracts for Space Laser Communication Prototypes

Mitsubishi Electric to Ship GaN MMIC Power Amplifier Samples for Ka-band SATCOM

7 Essential Tools for Diagnosing and Resolving Dirty Power Issues

NASA faces $80,000 claim after space debris hit family home

Laser tests reveal new insights into key mineral for super-Earths

Watery Planets Orbiting Dead Stars Could Be Good Candidates for Life Study

Discovery of Four Mini-Neptunes Around Red Dwarfs

Iron meteorites hint that our infant solar system was more doughnut than dartboard

Understanding Cyclones on Jupiter Through Oceanography

Unusual Ion May Influence Uranus and Neptune's Magnetic Fields

NASA's Europa Clipper Arrives in Florida for Launch Preparation

New Earth-Based Telescope Images of Jupiter's Moon Io Match Spacecraft Quality

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.