. 24/7 Space News .
TECH SPACE
Keep the light off: A material with improved mechanical performance in the dark
by Staff Writers
Nagoya, Japan (SPX) May 21, 2018

Inorganic semiconducting crystals generally tend to fail in a brittle manner. This is true for zinc sulfide (ZnS); ZnS crystals (A) show catastrophic fracture after mechanical tests under ordinary light-exposure environments (B). However, we found out that ZnS crystals can be plastically deformed up to a deformation strain of et = 45 % when deformed along the [001] direction in complete darkness even at room temperature (C). Moreover, the optical band gap of the deformed ZnS crystals decreased by 0.6 eV after deformation.

Inorganic semiconductors such as silicon are indispensable in modern electronics because they possess tunable electrical conductivity between that of a metal and that of an insulator. The electrical conductivity of a semiconductor is controlled by its band gap, which is the energy difference between its valence and conduction bands; a narrow band gap results in increased conductivity because it is easier for an electron to move from the valence to the conduction band.

However, inorganic semiconductors are brittle, which can lead to device failure and limits their application range, particularly in flexible electronics.

A group at Nagoya University recently discovered that an inorganic semiconductor behaved differently in the dark compared with in the light. They found that crystals of zinc sulfide (ZnS), a representative inorganic semiconductor, were brittle when exposed to light but flexible when kept in the dark at room temperature. The findings were published in Science.

"The influence of complete darkness on the mechanical properties of inorganic semiconductors had not previously been investigated," study coauthor Atsutomo Nakamura says. "We found that ZnS crystals in complete darkness displayed much higher plasticity than those under light exposure."

The ZnS crystals in the dark deformed plastically without fracture until a large strain of 45%. The team attributed the increased plasticity of the ZnS crystals in the dark to the high mobility of dislocations in complete darkness.

Dislocations are a type of defect found in crystals and are known to influence crystal properties. Under light exposure, the ZnS crystals were brittle because their deformation mechanism was different from that in the dark.

The high plasticity of the ZnS crystals in the dark was accompanied by a considerable decrease in the band gap of the deformed crystals. Thus, the band gap of ZnS crystals and in turn their electrical conductivity may be controlled by mechanical deformation in the dark.

The team proposed that the decreased band gap of the deformed crystals was caused by deformation introducing dislocations into the crystals, which changed their band structure.

"This study reveals the sensitivity of the mechanical properties of inorganic semiconductors to light," coauthor Katsuyuki Matsunaga says. "Our findings may allow development of technology to engineer crystals through controlled light exposure."

The researchers' results suggest that the strength, brittleness, and conductivity of inorganic semiconductors may be regulated by light exposure, opening an interesting avenue to optimize the performance of inorganic semiconductors in electronics.

Research Report: "Extraordinary Plasticity of an Inorganic Semiconductor in Darkness"


Related Links
Nagoya University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Microscale IR spectroscopy enabled by phase change materials and metasurfaces
Singapore (SPX) May 15, 2018
The mid-infrared is an interesting part of the electromagnetic spectrum that is composed of colours that cannot be seen by the human eye. Many chemical molecules resonate when illuminated by infrared light. This infrared resonance can then be used to identify or "fingerprint" the molecules. The infrared is, therefore, useful for a range of applications, including atmospheric pollution monitoring, detecting explosives and narcotics, measuring food quality, and many others. However, infrared optical ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
For how long will the USA remain the Nobel Prize leader?

Spinning science: multi-use variable-g platform arrives at the Space Station

The challenge of space gardening: One giant 'leaf' for mankind

The challenge of space gardening: One giant 'leaf' for mankind

TECH SPACE
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX launches most powerful Falcon 9 yet

SpaceX launches most powerful Falcon 9 yet

China to launch first rocket developed by private company

TECH SPACE
Sierra Nevada Corporation Hardware on NASA's Mars InSight Mission

Opportunity team continues studies on origin of 'Perseverance Valley'

NASA plans to send mini-helicopter to Mars

Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission

TECH SPACE
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

TECH SPACE
Australian Space Agency Lost In Canberra

In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

China's communication satellites occupy niche in world market

TECH SPACE
Microscale IR spectroscopy enabled by phase change materials and metasurfaces

Frequency-stable laser systems for space

Step aside Superman, steel is no competition for this new material

Telephonics contracted for Coast Guard radar systems

TECH SPACE
Orbital variations can trigger 'snowball states' on exoplanets

Atmospheric seasons could signal alien life

ANU study sheds new light on how our solar system formed

Dutch astronomers photograph possible toddler planet by chance

TECH SPACE
Old Data Reveal New Evidence of Europa Plumes

New views of Jupiter" showcases swirling clouds on giant planet

Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.