. 24/7 Space News .
AEROSPACE
How the digitalisation of aircraft cabins enables innovations for tomorrow's passengers
by Staff Writers
Hamburg, Germany (SPX) Apr 06, 2020

A virtual aircraft cabin

Changing demands among future passengers and developing trends in the global aviation market are resulting in the need for new, agile cabin designs and fuselage concepts. As such, aeronautics research is placing a stronger emphasis on the digitalisation of the aircraft cabin. The recently launched InDiCaD (Innovative Digital Cabin Design) project is establishing the technical foundation for creating digital links between the design and layout of cabin and fuselage concepts.

At the same time, a large number of technological innovations and reconfigurable modules are being integrated into cabin concepts, with a view to enabling the agile and efficient use of the entire aircraft fuselage.

These include options for using the underfloor area that was previously reserved for cargo. Ultimately, the aim is to promote reduce environmental impact and increase individual comfort. Previous DLR work on aircraft cabins, such as in the field of safety requirements, are being incorporated into the InDiCaD project.

Developing a digital chain
"InDiCaD's research approach is different to the way things are usually done in aeronautics research," says Christian Hesse of the DLR Institute of System Architectures in Aeronautics, based in Hamburg. "Until now, the entire aircraft served as the basis for the cabin design, but now we are looking at things from a different perspective. When thinking about the design, we are taking the cabin as our starting point."

Concepts and designs for the passenger area of an aircraft are intended to emerge from the project and then be adapted - either entirely or in a modular fashion - to new aircraft. In the future, entire aircraft may be adapted to new cabin designs. This will be possible thanks to complete digital continuity between design and layout, whereby new designs can be flexibly adapted to future requirements using computers.

A database for cabin designs
InDiCaD will create the technological prerequisites for incorporating requirements into the cabin design concepts at an early stage in the development phase. "To this end, we are developing digital methods for fully visualising the cabin as a virtual project and assessing its potential," explains Frank Meller, Head of the Cabins and Payload Systems Department at the DLR Institute of System Architectures in Aeronautics.

"One of the primary goals of the InDiCaD project is to achieve a digital information chain that runs from design to production, and all the way through to their demonstration and implementation in operation."

The institutes of Aerospace Medicine, Air Transport and Airport Research, Flight Systems, Composite Structures and Adaptive Systems, Structures and Design, Materials Research and Software Methods for Product Virtualisation are combining their expertise in fields such as new materials and cabin and fuselage technology for this project. A database of various cabin designs will be available by the end of the project in 2022.

Sleeping below deck
Completely new uses may be conceivable as part of the further development of fuselage concepts. In future, airlines want to use the underfloor areas within the fuselage for cargo and the flexible transport of additional passengers.

"To this end, we will be developing new design solutions over the coming years," says Hesse. "These kinds of unconventional approaches are only possible through the type of digital linking of design and layout offered by InDiCaD." The researchers involved in the project are also addressing the more advantageous distribution of passengers across two levels in the upper section of the aircraft fuselage.

Many key aspects, such as boarding, are specifically included as part of the overall design, including the turnaround time of an aircraft on the ground, which has a major bearing on its economic efficiency. For example, researchers may look at how turnaround times and passenger changes can be represented in the cabin concepts, and which options for design adaptations are associated with this. This will also take account of the passengers, for whom the boarding and disembarking times at the airport are a key factor in the way in which they assess airlines, together with cabin comfort.

Researching modified cabin acoustics for low-emission propulsion systems
InDiCaD is also concerned with new approaches for reducing cabin noise, as new engines that reduce fuel consumption and exhaust emissions may require new technological solutions for the fuselage and cabin design.

The cabin acoustics of engines with extremely high bypass ratio engines or counter-rotating, open propellers, for example, have been the subject of very little research. Active and passive noise reduction methods are to be investigated as part of the project, with the aim of resolving the expected acoustic issues. These include the active control and suppression of vibration levels in the cabin structure, along with the use of innovative aerogel materials.


Related Links
DLR Institute of System Architectures in Aeronautics,
Aerospace News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


AEROSPACE
Predicting in-flight air density for more accurate landing
Urbana IL (SPX) Apr 03, 2020
In the final few minutes of a spacecraft landing it is moving at hypersonic speeds through many layers of atmosphere. Knowing the air density outside of the vehicle can have a substantial effect on its angle of descent and ability to hit a specific landing spot. But air density sensors that can withstand the harsh hypersonic conditions are uncommon. A student from The Netherlands, working with an aerospace engineer at the University of Illinois at Urbana-Champaign, developed an algorithm that can ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
Insects, seaweed and lab-grown meat could be the foods of the future

Construction of Russian National Space Center to be finished in Moscow in 2023

An astronaut's tips for living in space or anywhere

Boeing's first manned Starliner to be launched to ISS on 31 August

AEROSPACE
AEHF-6 launch marks 500th flight of Aerojet Rocketdyne's Rl10 engine

US Space Force launches first mission despite coronavirus

Pentagon tests hypersonic glide body in Hawaii

NASA, SpaceX plan return to human spaceflight from U.S. soil in mid-May

AEROSPACE
NASA's Curiosity Mars rover takes a new selfie before record climb

NASA's Mars Perseverance Rover Gets Its Sample Handling System

Waves in thin Martian air with wide effects

ExoMars to take off for the Red Planet in 2022

AEROSPACE
China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

AEROSPACE
ESA scales down science mission operations amid pandemic

Venezuelan communications satellite out of service

RUAG Space delivered key products for Airbus OneWeb satellite launch

OneWeb launches 34 communications satellites from Kazakhstan

AEROSPACE
Technique reveals how crystals form on surfaces

Zoom under scrutiny in US over privacy, porn hacks

World Centric announces new World Centric leaf fiber lids

Creating custom light using 2D materials

AEROSPACE
Salmon parasite is world's first non-oxygen breathing animal

Warped Space-time to Help WFIRST Find Exoplanets

Paired with super telescopes, model Earths guide hunt for life

Planetary Science Journal launches with online papers

AEROSPACE
Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.