24/7 Space News
TIME AND SPACE
How different were galaxies in the early universe
The HERA radio telescope is helping astronomers get one step closer to discovering the secrets of the cosmic dawn.
How different were galaxies in the early universe
by Staff Writers
Montreal, Canada (SPX) Apr 18, 2023

An array of 350 radio telescopes in the Karoo desert of South Africa is getting closer to detecting the "cosmic dawn" - the era after the Big Bang when stars first ignited and galaxies began to bloom.

A team of scientists from across North America, Europe, and South Africa has doubled the sensitivity of a radio telescope called the Hydrogen Epoch of Reionization Array (HERA). With this breakthrough, they hope to peer into the secrets of the early universe.

"Over the last couple of decades, teams from around the world have worked towards a first detection of radio waves from the cosmic dawn. While such a detection remains elusive, HERA's results represent the most precise pursuit to date," says Adrian Liu, an Assistant Professor at the Department of Physics and the Trottier Space Institute at McGill University.

The array was already the most sensitive radio telescope in the world dedicated to exploring the cosmic dawn. Now the HERA team has improved its sensitivity by a factor of 2.1 for radio waves emitted about 650 million years after the Big Bang and 2.6 for radio waves emitted about 450 million years after the Big Bang. Their work is described in a paper published in The Astrophysical Journal.

Although the scientists have yet to detect radio emissions from the end of the cosmic dark ages, their results provide clues about the composition of stars and galaxies in the early universe. So far, their data suggest that early galaxies contained very few elements besides hydrogen and helium, unlike our galaxies today. Today's stars, have a variety of elements, ranging from lithium to uranium, that are heavier than helium.

Ruling out some theories
When the radio dishes are fully online and calibrated, the team hopes to construct a 3D map of the bubbles of ionized and neutral hydrogen - markers for early galaxies - as they evolved from about 200 million years to around 1 billion years after the Big Bang. The map could tell us how early stars and galaxies differed from those we see around us today, and how the universe looked in its adolescence, say the researchers.

According to the researchers, the fact that the HERA team has not yet detected these signals rules out some theories of how stars evolved in the early universe. "Our data suggest that early galaxies were about 100 times more luminous in X-rays than today's galaxies. The lore was that this would be the case, but now we have actual data that bolsters this hypothesis," says Liu.

Waiting for a signal
The HERA team continues to improve the telescope's calibration and data analysis in hopes of seeing those bubbles in the early universe. However, filtering out the local radio noise to see the signals from the early universe has not been easy. "If it's Swiss cheese, the galaxies make the holes, and we're looking for the cheese," says David DeBoer, a research astronomer in University of California Berkeley's Radio Astronomy Laboratory.

"HERA is continuing to improve and set better and better limits," says Aaron Parsons, principal investigator for HERA and a University of California Berkeley Associate Professor of astronomy. "The fact that we're able to keep pushing through, and we have new techniques that are continuing to bear fruit for our telescope, is great."

The HERA collaboration is led by University of California Berkeley and includes scientists from across North America, Europe, and South Africa, with support in Canada from Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, Fonds de recherche du Quebec - Nature et technologies, and from the Trottier Space Institute at McGill University. The construction of the array is funded by the National Science Foundation, the Alfred P. Sloan Foundation, and the Gordon and Betty Moore Foundation, with key support from the government of South Africa and the South African Radio Astronomy Observatory (SARAO).

Research Report:Improved Constraints on the 21 cm EoR Power Spectrum and the X-Ray Heating of the IGM with HERA Phase I Observations

Related Links
Hydrogen Epoch of Reionization Array (HERA)
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
A new measurement could change our understanding of the Universe
Lausanne, Switzerland (SPX) Apr 06, 2023
The Universe is expanding - but how fast exactly? The answer appears to depend on whether you estimate the cosmic expansion rate - referred to as the Hubble's constant, or H0 - based on the echo of the Big Bang (the cosmic microwave background, or CMB) or you measure H0 directly based on today's stars and galaxies. This problem, known as the Hubble tension, has puzzled astrophysicists and cosmologists around the world. A study carried out by the Stellar Standard Candles and Distances research grou ... read more

TIME AND SPACE
Russian cosmonauts take spacewalk outside of ISS

Space seeds take root in Inner Mongolia

Calnetix Technologies' high-speed blower system installed on ISS

Rocket Lab launches new constellation-class star tracker

TIME AND SPACE
Rocket Lab introduces suborbital testbed rocket, selected for hypersonic test flights

Elon Musk forms X.AI artificial intelligence company

SpaceX reschedules Starship test flight for Thursday

Southern Launch to partner with Koonibba aboriginal community to develop spaceport

TIME AND SPACE
Clouds Above, Contact Science Below: Sols 3800-3802

Hey Percy, look at those boulders

Curiosity gets a major software upgrade

Ingenuity Mars Helicopter completes 50th flight

TIME AND SPACE
China, France join hands in space

Shenzhou XV mission crew members set China record

Spacewalks become 'routine' after 12th mission

Rocket that will carry Tianzhou ship to space arrives at launch center

TIME AND SPACE
Viasat confirms ViaSat-3 Americas set to launch

Virgin Orbit bankruptcy: why the UK's spaceport industry may still have a bright future

Nova Space to offer Space Professional Development Program for AWS Employees

HawkEye 360's latest Cluster 7 satellites successfully launched

TIME AND SPACE
NASA satellite's elusive green lasers spotted at work

General Atomics completes commissioning of space environmental testing chambers

SwRI joins new NASA institute to qualify, certify additive manufacturing methods

Viasat real-time Earth antennas integrated on Microsoft Azure Orbital

TIME AND SPACE
International team discover new exoplanet partly using direct imaging

Webb peeks into the birthplaces of exoplanets

HD 169142 b, the third protoplanet confirmed to date

Do Earth-like exoplanets have magnetic fields

TIME AND SPACE
Icy Moonquakes: Surface Shaking Could Trigger Landslides

Europe's Jupiter probe launched

Europe's JUICE mission blasts off towards Jupiter's icy moons

Spotlight on Ganymede, Juice's primary target

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.