. 24/7 Space News .
TIME AND SPACE
HRL develop a low-power cold-atom source for atomic clocks and physics experiments
by Staff Writers
Malibu CA (SPX) Aug 07, 2017


HRL researchers develop a low-power cold-atom source for atomic clocks and physics experiments. Credit HRL Laboratories, LLC

HRL Laboratories, LLC, researchers have developed a reversible alkali atom source that runs at low power and low voltage, which is beneficial in applications such as smaller, more efficient, and ultimately portable atomic clocks that use cold atoms. The research on the device was published online June 13, 2017 in Applied Physics Letters.

"There are two basic types of atomic clocks, some operate at room temperature and some use atoms cooled down to just above absolute zero," said Chris Roper, HRL's project leader and senior author on the paper.

"Scientists have managed to miniaturize room temperature atomic clocks, but cold-atom atomic clocks are much more accurate, so DARPA would like to have miniaturized versions of those too. The problem is that cold-atom clocks come with a whole host of added difficulties. Our device is a big step toward solving many of those problems."

This HRL research project, Solid Electrolyte Rubidium Vapor Orchestration (SERVO), was part of a larger Defense Advanced Research Projects Agency (DARPA) program called Enabling Component Technology for Cold-Atom Microsystems (CAMS).

Because modern communications, navigation, and electronic warfare depend on accurate timekeeping, according to DARPA the success of the CAMS program will benefit nearly every US defense system.

The HRL device could enable lighter weight platforms with fewer batteries or longer duration missions. To operate at temperatures near 100 microkelvin, it is necessary to capture a subset of atoms from a warm vapor - a vapor of the alkali element rubidium in the HRL device - and cool them down.

The cooled atoms are trapped, and the more background warm atoms there are in the chamber, the weaker the signal-to-noise ratio is for the cold atoms, which reduces device accuracy.

The HRL device uses materials originally developed for batteries to remove only the warm rubidium atoms. This will reduce measurement noise and increase accuracy when integrated into a cold-atom clock. It will also keep the cold atoms cold for longer, enabling greater accuracy in atomic clocks, especially at higher operating temperatures.

"Our device can be integrated in a platform with smaller batteries because it uses much less power than traditional rubidium sources and it is reversible, depending on the polarity of the voltage applied, so it works as a source or a sink," Roper said. "Our research is continuing and we're very excited about our results thus far."

TIME AND SPACE
Physicists design ultrafocused pulses
Innsbruck, Austria (SPX) Jul 31, 2017
Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to small spatiotemporal dimensions. Engineers may use different methods to achieve this. In the journal Physical Review Letters, researchers in Oriol Romero-Isart's group at the Institute of Quantum Optics and Quantum Information (IQOQI) an ... read more

Related Links
HRL Laboratories
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Offers Space Station as Catalyst for Discovery in Washington

Let's cut them off from access to Space

ESA astronaut Paolo Nespoli starts third mission on Space Station

NextSTEP Partners Develop Ground Prototypes to Expand our Knowledge of Deep Space Habitats

TIME AND SPACE
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

India looks to more launches with new facility from 2018

Sea Launch to be modernized for Russia's Soyuz-5 carrier rocket

Navy completes testing fixes on electro-magnetic launch systems

TIME AND SPACE
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

TIME AND SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

TIME AND SPACE
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Airbus DS to expand cooperation with Russia

UK space companies to develop international partnerships

TIME AND SPACE
Algorithms that can sketch, recreate 3-D shapes

Nanoparticles for 3-D printing in water open door to advanced biomedical materials

WSU physicists turn a crystal into an electrical circuit

Researchers set new record for tape storage

TIME AND SPACE
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Breakthrough Starshot launches tiny spacecraft in quest for Alpha Centauri

TIME AND SPACE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

NASA's New Horizons Team Strikes Gold in Argentina









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.