. 24/7 Space News .
TIME AND SPACE
Galaxy with a huge black hole is a hermit
by Staff Writers
Garching, Germany (SPX) Apr 08, 2016


The elliptical galaxy NGC 1600 (left) harbours a very massive black hole with 17 billion times the mass of the Sun. Unlike other galaxies, where very massive black holes have been found (like NGC 4889, right), it is the largest of a small group of galaxies and not in a rich cluster. Image courtesy MPE/Gemini Observatory

The most massive black holes are not confined to the highest density regions in the universe as a new discovery in a galaxy close to our Milky Way shows. An international team of astronomers from the Max Planck Institute for Extraterrestrial Physics, the USA, and Canada analysed observations from a survey of massive early-type galaxies and found that the black hole at the centre of the group galaxy NGC 1600 has a mass 17 billion times larger than our Sun, one of the most massive black holes found to date.

Moreover, the analysis shows that the distribution of stars near the centre of the galaxy is rather diffuse and that the size of this region extends over the same radius as the gravitational sphere of influence of the black hole.

Massive black holes reside at the centre of almost all galaxies - the one at the heart of our Milky Way is one of the smaller ones, with a mass of "only" 4 million times larger than the Sun. In the distant and early universe, black holes a thousand times more massive than the one in the Milky Way centre power quasars, or quasi-stellar objects: powerful beacons whose energy is released by the accretion of gas onto the massive black holes causing them to outshine their host galaxies by many orders of magnitude.

Until now, the dormant descendants of these very massive black holes typically have only been found in gigantic galaxies at the centres of massive clusters of galaxies with hundreds of other galaxies. What has become of all the other accreting big black holes today?

One of them - and an extremely massive one - has now been found: the centre of the galaxy NGC 1600 harbours a black hole with a mass 17 billion times larger than that of our Sun. This is one of the largest black holes found to date.

The astronomers used observations from the MASSIVE survey, which aims to study the structure, dynamics, and formation history of the 100 most massive early-type galaxies within about 350 million light-years of our Milky Way. In particular, the astronomers measured the stellar velocities near the black hole which were then fed into models for stellar orbits to determine the mass of the black hole.

The huge mass of the black hole combined with the fact that NGC 1600 is part of a relatively small group of only a few galaxies makes this discovery exciting: "This is the first time that we find such a massive black hole in a relatively isolated galaxy, outside a rich galaxy cluster", states Jens Thomas from the Max Planck Institute for Extraterrestrial Physics, lead author of the study now published in the journal Nature.

"Other galaxies found to harbour very massive black holes are typically located in dense regions of the Universe populated by many other galaxies and clusters," says Jens Thomas. NGC 1600 is the brightest member of its group and outshines the other members by at least three times. To grow so big it may have had a head start, merging with its former close-by galaxies and their central black holes early on.

"Equally astonishing is the centre of the galaxy: it is very diffuse, as if billions of stars are missing." says Chung-Pei Ma, from the University California Berkeley, USA, who leads the MASSIVE Survey.

Massive galaxies like NGC 1600 and their black holes typically grow through mergers and the aftereffects of such a galaxy merger could remove stars from the centre: the two black holes of two merging galaxies are believed to form a binary before they ultimately merge, and stars passing close-by are scattered to larger radii due to gravitational slingshots.

"Less massive elliptical galaxies typically get brighter and brighter the closer you get to the centre, but in NGC 1600 it's like the equivalent of all the stars of the Milky Way disk have been removed," Jens Thomas explains.

By comparing their result with mass determinations of a sample of other core galaxies, the astronomers found that the radius of the region with depleted stellar densities is indistinguishable from the gravitational sphere of influence of the black hole. The core radius seems to be a better indicator of black hole mass than other galaxy properties.

"The black hole in NGC 1600 is the first example of a possible descendant of a luminous quasar in a relatively isolated galaxy," says Chung-Pei Ma. "There are quite a few galaxies of comparable size that reside in average-sized galaxy groups. At the moment we do not know if such very massive black holes are common in other nearby massive galaxies as well. Our ongoing observations will soon reveal if our discovery is a rare find or just the tip of an iceberg."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Max Planck Institute for Extraterrestrial Physics
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Elusive Japanese black hole seeking satellite breaks silence
Tokyo (Sputnik) Apr 05, 2016
Japan's X-Ray Astronomy Satellite Hitomi, which was launched last month, has managed to make fleeting contact with ground control amid reports that the spacecraft has separated into six parts. The X-Ray Astronomy Satellite Hitomi, which was launched into low-Earth orbit from Japan's Tanegashima Space Center on February 17, has communicated sporadically with ground control in spite of repor ... read more


TIME AND SPACE
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

TIME AND SPACE
Help keep heat on Mars Express through data mining

Scientists find Mars surface replica in India

Ancient Mars bombardment likely enhanced life-supporting habitat

Rover takes on steepest slope ever tried on Mars

TIME AND SPACE
Silicon Beach: LA tech hub where the sun always shines

Spanish port becomes global 'smart city' laboratory

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

TIME AND SPACE
Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

TIME AND SPACE
Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

TIME AND SPACE
NASA Progresses Toward SpaceX Resupply Mission to Space Station

Boeing takes steps to block sale of Sea Launch

Reusing Falcon 9 boosters would slash costs by 30 percent

Atlas V OA-6 Anomaly Status

TIME AND SPACE
ALMA's most detailed image of a protoplanetary disc

Planet formation in Earth-like orbit around a young star

NASA's Spitzer Maps Climate Patterns on a Super-Earth

'Smoothed' light will help search for Earth's twins

TIME AND SPACE
New state of matter detected in a two-dimensional material

Light helps develop programmable materials

Upgrade to offer power boost to world's brightest X-ray laser

Record-breaking steel could be used for body armor, shields for satellites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.