. 24/7 Space News .
TECH SPACE
Flipping molecular attachments amps up activity of CO2 catalyst
by Staff Writers
Upton NY (SPX) Oct 06, 2015


The Brookhaven research on an iridium hydride complex revealed two isomers -- different molecular arrangements of the same atoms (represented here with stick figures and the corresponding images showing the positions of the atoms). A simple flip in positioning of the two connected rings of atoms at the bottom of these images relative to the rest of the molecule has a dramatic effect on the respective molecules' properties. Image courtesy Brookhaven National Laboratory. For a larger version of this image please go here.

New research by chemists at the U.S. Department of Energy's Brookhaven National Laboratory and their collaborators offers clues that could help scientists design more effective catalysts for transforming carbon dioxide (CO2) to useful products. The study, published in Angewandte Chemie International Edition, reveals how a simple rearrangement of molecular attachments on an iridium hydride catalyst can greatly improve its ability to coax notoriously stable CO2 molecules to react.

The research, which combined laboratory experiments with theoretical analysis, shows that, in the dark, only one of the two molecular arrangements can effectively transform CO2 to formate (HCOO-), a precursor of methanol. In the presence of light, however, both species form a common intermediate that can transform CO2 to carbon monoxide (CO), a useful raw material for making fuels and industrial chemicals.

"There is strong interest in finding ways to reuse CO2 to create a carbon-neutral society," said Brookhaven chemist Etsuko Fujita, who led the experimental portion of this work. "Reactions to produce products such as methanol or hydrocarbons from CO2 would be very useful. But if you think about the energy input and output of these reactions, it's really very difficult," she said.

Finding more efficient catalysts is the key to lowering the energy required to jump-start these reactions. Because various researchers had suggested that the iridium hydride catalyst might be an improvement over other well-known catalysts for producing CO from CO2, Fujita's group undertook this research to investigate its mechanism of action.

"If you understand how a catalyst works, you can often devise ways to modify its function to make it work even better," said Zahid Ertem, whose theoretical analyses provided the framework for understanding the experimental results.

Based on earlier research, the scientists had suspected there might be two varieties of this particular catalyst-different molecular arrangements of the same atoms, known as isomers. And indeed their experiments allowed them to isolate the two varieties.

The only structural difference between the two isomers is a simple flip in positioning of two connected rings of atoms relative to the rest of the molecule-one linked to the central iridium atom by a negatively charged carbon atom, and the other linked by a neutral nitrogen atom. But that simple flip in the positions of these two rings has a dramatic effect on the respective molecules' properties.

For example, the molecule was much more likely to give up what's called a hydride ion-a negatively charged ion consisting of a proton and two electrons-when the carbon-linked ring was in a position opposite the hydride compared with when the nitrogen-linked ring was in that position.

"That's important because the chemical conversion of CO2 to other products such as hydrocarbons can be facilitated when electrons are transferred to CO2 two at a time as they are in hydride ions," Ertem said. "So a catalyst with a higher tendency to release these hydride ions-a higher hydricity-is potentially a much better catalyst.

"While the generation of formate is the first step in a possible sequence of hydride transfer reactions, we envision going further than formate-for example, to methanol," he said.

Another aim of the study was to explore the role of iridium hydride as a proposed key intermediate in the conversion of CO2 to CO. But as it turns out, the intermediate is a form of the molecule that lacks the hydride but has the carbon-linked ring in the position opposite where the hydride would attach.

"In fact, no matter which isomer we started with, the theoretical calculations show that this species with the carbon positioned opposite the vacant hydride position forms as an intermediate, which then catalyzes the conversion of CO2 to CO," Ertem said.

"Because that intermediate is so reactive," Fujita added, "it is extremely hard to isolate experimentally-which is one reason the theoretical analysis was so important to this study. The theoretical analysis corroborated all the measurements we could make and predicted the existence of this one key intermediate," she said.

The theoretical calculations also offered insight into why the positioning of the carbon atom is so essential to the reactivity of this species-and may suggest strategies for the rational design of more effective catalysts.

"In the ground state, the length of the metal-hydride bond is significantly longer in the isomer where the carbon is opposite the hydride than it is in the flipped isomer where the nitrogen atom is opposite the hydride," said Ertem.

"Unlike the neutral nitrogen atom, the negatively charged carbon 'pushes' electrons through the metal atom toward the hydride ion, lengthening the metal-hydride bond and increasing the hydricity. That, in turn, makes it easier for the hydride to be given up during reactions when the carbon is in this position."

A next step might be trying to design an even more reactive catalyst by adding strong electron-donating groups.

Fujita and Ertem collaborated with these additional co-authors on this study: Komal Garg, Brookhaven Lab; Yasuo Matsubara, Brookhaven Lab and Japan Science and Technology Agency (JST), now at Kanagawa University; Anna Lewandowska-Andralojc, Brookhaven Lab, now at Adam Mickiewicz University; Shunsuke Sato, JST and Toyota Central R and D Labs, Inc.; David Szalda, Baruch College, City University of New York; and James Muckerman, Brookhaven Lab.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brookhaven National Laboratory
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
New system allows heightened purity of a metal binding compound
Buffalo NY (SPX) Oct 06, 2015
A team of researchers from the State University of New York at Buffalo (University at Buffalo) have demonstrated a novel means of pre-purifying a natural product generated from a biosynthetic platform. The compound, termed yersiniabactin, has a unique ability to form strong complexes with metal ions, including iron and copper. As such, the compound has potential in a range of applications ... read more


TECH SPACE
Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

TECH SPACE
MRO imagery reveals Red Planet's stressed substrate

Geology Award Going to Mars Landing Site Expert at JPL

Terraforming the Red Planet: Nuclear Blasts Could Warm Mars for Humans?

NASA Lays the Groundwork for Homesteading in Space

TECH SPACE
Selected NASA Discovery Missions Include Three With PSI Ties

NASA Selects Investigations for Future Key Planetary Mission

Chinese herbal expert among Nobel medicine prize winners

Down to Earth and walking the line

TECH SPACE
Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

TECH SPACE
Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

Russian launches cargo spaceship to the ISS

Successful re-entry of H-II Transfer Vehicle Kounotori5

TECH SPACE
Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

45th Space Wing supports ULA's 100th launch

TECH SPACE
The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

TECH SPACE
Caution: Shrinks when warm

Flipping molecular attachments amps up activity of CO2 catalyst

New system allows heightened purity of a metal binding compound

Redefining temperature with precision lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.