. 24/7 Space News .
ENERGY TECH
Flexible thermoelectric generator module: A silver bullet to fix waste energy issues
by Staff Writers
Osaka, Japan (SPX) Dec 19, 2018

Photo and schematic design of the FlexTEG module, photo of Bismuth-telluride (Bi-Te) semiconductor chips, and voltage and power as a function of the current for the FlexTEG module at different temperature gradients.

A team of researchers led by Osaka University developed an inexpensive large-scale flexible thermoelectric generator (FlexTEG) module with high mechanical reliability for highly efficient power generation.

Through a change in direction of the top electrodes at the two sides of the module and the use of high density packaging of semiconductor chips, the FlexTEG module has more flexibility in any uniaxial direction. This improved efficiency of recovery, or thermoelectric conversion, of waste heat from a curved heat source, enhancing the module's mechanical reliability as less mechanical stress is placed on semiconductor chips in the module.

It is said that Society 5.0, a super-smart society in which our living space will be networked by various IoT (Internet of Things) technologies, will come in the near future. A thermoelectric generation system to permanently generate power by efficiently recovering waste heat energy emitted in the environment is an effective means to conserve the global environment and save energy, and research for applying this system to energy sources for next-generation IoT devices has gained attention.

Thermoelectric conversion technology directly converts thermal energy to electric power, and vice versa. Since it allows for energy conversion according to temperature difference even if the difference is small, this next-generation technology will contribute to energy harvesting, a process that captures small amounts of energy that would otherwise be lost.

Thermoelectric conversion is one of the most suitable techniques for converting low-temperature (150C or lower) waste heat into electric power, leading to the development of power generation systems using the TEG module.

However, since the packaging technique of thermoelectric generation modules that can operate in a range of 100-150C has not yet been established, thermoelectric generation technology for that range has not seen practical use. In addition, the production cost of modules for generating power at room temperature was so high that applications of the technology were limited to specific areas, such as applications in space.

By mounting small thermoelectric (TE) semiconductor chips on a flexible substrate at high packaging density, the researchers achieved reliable and stable adhesion with electrical contacts between the chips and the flexible substrate, realizing efficient recovery (thermoelectric conversion) of waste heat.

In conventional nonflexible thermoelectric conversion modules, the top electrodes at the two sides were perpendicularly mounted to the other top electrodes, so the curvature of the module was limited. However, in this FlexTEG module, all of the top electrodes were integrated in parallel, providing flexibility when bent in any uniaxial direction. This reduced mechanical stress on chips, improving mechanical (physical) reliability of the FlexTEG module.

Lead author Tohru Sugahara says, "Because of heat resistance of all semiconductor packaging materials (up to around 150C) and mechanical flexibility of the module, our FlexTEG module will be used as a conversion thermoelectric generator module for waste heat of 150C or lower. Its mounting technique is based on conventional semiconductor packaging techniques, so mass production and cost reduction of thermoelectric conversion modules are anticipated."

The team's research results were published in Advanced Materials Technologies.

Research Report: "Fabrication with Semiconductor Packaging Technologies and Characterization of Large-Scale Flexible Thermoelectric Module"


Related Links
Osaka University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes
New Brunswick NJ (SPX) Dec 14, 2018
What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your electric bill and carbon footprint? Engineers at Rutgers and Oregon State University have found a cost-effective way to make thin, durable heating patches by using intense pulses of light to fuse tiny silver wires with polyester. Their heating performance is nearly 70 percent higher than similar patches created by other researchers, according ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Four NASA-sponsored experiments set to launch on Virgin Galactic spacecraft

Russian spacewalkers take sample of mystery hole at space station

NASA's Voyager 2 Probe Enters Interstellar Space

We're all ears as Voyager 2 goes Interstellar

ENERGY TECH
NASA Sounding Rockets Carry TRICE-2 over Norwegian Sea

Tesla CEO Elon Musk taunts US financial regulatory agency

China puts 2 Saudi satellites into orbit

Rocket Lab prepares to launch historic CubeSat mission for NASA

ENERGY TECH
NASA's InSight takes its first selfie

InSight's robotic arm ready for some lifting on Mars

NASA's InSight lander 'hears' wind on Mars

NASA's Mars InSight Flexes Its Arm

ENERGY TECH
China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

ENERGY TECH
CAT rules in favour of Ofcom's EAN authorisation decision

Fleet Space Technologies' Centauri launched aboard SpaceX Falcon 9

Roscosmos Targeted by Info Attack to Hamper Revival of Space Industry in Russia

SAS Signs Distribution Agreement with GlobalSat Group

ENERGY TECH
Gaming firm settles VR lawsuit with Facebook-owned Oculus

Green production of chemicals for industry

Scientists discover a material breaking modern chemistry laws

The stiffest porous lightweight materials ever

ENERGY TECH
Common ground discovered in planet-forming disks

UNLV study unlocks clues to how planets form

The epoch of planet formation, times twenty

Helium exoplanet inflated like a balloon, research shows

ENERGY TECH
NASA's Juno mission halfway to Jupiter science

Record Setting Course-Correction Puts New Horizons on Track to Kuiper Belt Flyby

Radio JOVE From NASA: Tuning In to Your Local Celestial Radio Show

The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.