. | . |
Flexible quantum sieve filters out the deuterium by Staff Writers Dresden, Germany (SPX) Apr 15, 2022
Starship Enterprise flew through the galaxy using deuterium as fuel. Even if this was science fiction from the 1960s and 70s, research on the real application of the hydrogen isotope for energy generation is still going on today. The main challenge here is the extraction of the isotope. Deuterium (chem. abbrev. D, "heavy" hydrogen) is one of the three natural isotopes of hydrogen, along with protium (H, "normal" hydrogen) and tritium (T, "superheavy" hydrogen). Both deuterium and protium are stable isotopes of hydrogen. Ordinary water and heavy water made from deuterium are similarly stable. Tritium (T) is extremely promising from a technical standpoint, but is not without safety concerns due to its radioactivity. Deuterium is extracted from heavy water, i.e. water containing deuterium, which is contained to 0.15 per mille in the natural water resources of our earth. To do this, the heavy water is first isolated using chemical and physical processes and then deuterium gas is produced. These processes are so complex and energy-intensive that one gram of deuterium is more expensive than a gram of gold, even though its natural occurrence is many times higher. But the demand for pure deuterium continues to grow, because its unique physical properties mean that its potential applications are far from exhausted: when used in medicines, deuterium has already been shown to have a life-prolonging effect, albeit initially only for the active ingredient itself. Drugs containing deuterium can be dosed lower, so that their side effects are also reduced. In nuclear reactors, deuterium plays an important role as a moderator. In addition, a mixture of deuterium and tritium or 3Helium is planned to be used as fuel in future fusion reactors. Other fields of application include medicine, life sciences, analysis, and novel TV displays. In an interdisciplinary collaboration, the groups of Prof. Stefan Kaskel and Prof. Thomas Heine from TU Dresden, together with Dr. Michael Hirscher from the MPI for Intelligent Systems Stuttgart, have now developed a novel separation mechanism for the hydrogen isotopes based on the flexible metal-organic framework "DUT-8" developed at TU Dresden. "Our material enables separation of gaseous deuterium from hydrogen. The unique metal-organic framework DUT-8 is highly flexible and can dynamically adapt its pore size. But this structural response was found to be highly selective: Only deuterium can open the pores while hydrogen leaves the framework closed. This highly selective recognition leads to a high separation selectivity combined with high deuterium uptake ," explains Stefan Kaskel, professor of Inorganic Chemistry at TU Dresden. With his group, he specializes in novel nanostructured and porous functional materials for energy storage and conversion and has already developed several patented materials. His material DUT-8, published in 2012, initially showed no hydrogen uptake, neither at high pressure nor at very low temperatures. "During our measurements at the MPI in Stuttgart, we observed for the first time an opening of the structure of DUT-8 under deuterium atmosphere at very low temperatures. Subsequently, we also succeeded in separating hydrogen isotope mixtures experimentally, with the material acting as a kind of flexible and therefore extremely efficient "quantum sieve"," explains Dr. Michael Hirscher, who has been researching efficient separation mechanisms for hydrogen isotopes at the MPI for Intelligent Systems for several years. First-principles calculations in conjunction with statistical thermodynamics predict the isotope-selective opening and rationalize them with pronounced nuclear quantum effects. However, there are other so-called isotopologues (molecules of the same elements but different isotopes) of hydrogen, namely HD, HT, DT and T2, which have to be considered in the separation, and those containing T are radioactive. In the group of Thomas Heine, Chair of Theoretical Chemistry at TU Dresden, the behavior of these isotopologues has been simulated. "In this joint work, we have succeeded in replacing safety-related problematic experiments with radioactive material with validated computer simulations and thus in making predictions for potential applications of this isotope-dependent opening effect of DUT-8," Professor Heine explains. His simulations show that DUT-8 opens only for isotopologues without light H isotopes. For HD, these predictions have already been confirmed experimentally by Dr. Hirscher's group.
Research Report:"Isotope-selective pore opening in a flexiblemetal-organic framework"
Clean driving technology enables cleaner rocket fuel Riverside CA (SPX) Feb 24, 2022 A chemical used in electric vehicle batteries could also give us carbon-free fuel for space flight, according to new UC Riverside research. In addition to emission reductions, this chemical also has several advantages over other types of rocket fuels: higher energy, lower costs, and no requirement for frozen storage. The chemical, ammonia borane, is currently used for storing the hydrogen in fuel cells that power electric vehicles. UCR researchers now understand how this combination of boron ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |