. 24/7 Space News .
ROCKET SCIENCE
Clean driving technology enables cleaner rocket fuel
by Staff Writers
Riverside CA (SPX) Feb 24, 2022

Model of ammonia borane

A chemical used in electric vehicle batteries could also give us carbon-free fuel for space flight, according to new UC Riverside research.

In addition to emission reductions, this chemical also has several advantages over other types of rocket fuels: higher energy, lower costs, and no requirement for frozen storage.

The chemical, ammonia borane, is currently used for storing the hydrogen in fuel cells that power electric vehicles. UCR researchers now understand how this combination of boron and hydrogen can release enough energy to also launch rockets and satellites.

"We are the first to demonstrate that in addition to electric vehicles, ammonia borane can be used to make rockets go too, under the right conditions," said Prithwish Biswas, UCR chemical engineer and first author of the new study. Their demonstration has now been published in The Journal of Physical Chemistry C.

The most commonly used rocket fuels are hydrocarbon based and are known to have a variety of negative environmental impacts. They can poison the soil for decades, cause cancer, and produce acid rains, ozone holes and greenhouse gases like carbon dioxide.

By contrast, once burned, ammonia borane releases the benign compounds boron oxide and water. "It is much less harmful to the environment," said Biswas.

Compared with hydrocarbon fuels, ammonia borane also releases more energy, potentially resulting in cost savings because less of it is required to power the same flight.

To release energy from the fuel and enable combustion, catalysts and oxidizers are added to supply extra oxygen to the fuel. Fuel cells often employ catalysts for this purpose. They enhance the rate of combustion, but they also stay in the same form both before and after the reaction.

"Spacecraft require high amounts of energy in a short amount of time, so it's not ideal to use a catalyst because it doesn't contribute to the energy you need. It's like dead mass in your gas tank," said Pankaj Ghildiyal, University of Maryland chemistry Ph.D. student and study co-author, currently working at UCR.

The inherent chemistry of ammonia borane decomposition hinders the release of its total energy on reaction with most oxidizers. However, the researchers found an oxidizer that alters the decomposition and oxidation mechanisms of this fuel, leading to the extraction of its total energy content.

"This is analogous to the use of catalytic converters to enable the complete combustion of hydrocarbon fuels," Ghildiyal said. "Here, we were able to create more complete combustion of the chemicals and increase the energy of the entire reaction by using the chemistry of the oxidizer itself, without needing a catalyst."

In addition to creating undesirable byproducts, some rocket fuels also require storage at sub-freezing temperatures. "NASA has used liquid hydrogen, which has very low density," Ghildiyal said. "It therefore requires a lot of space as well as cryogenic conditions for maintenance."

By contrast, this fuel is stable at room temperature and is resistant to high heat. In this study, the researchers created very fine, nanoscale particles of ammonium borane, which could degrade over the course of a month in very humid environments.

The research team is now studying the way ammonium borane particles of various sizes age in different environments. They're also developing methods of encapsulating particles of the fuel a protective coating, to enhance their stability in moist conditions.

This research was supervised by Michael R. Zachariah, UCR chemical engineering professor, and funded by the U.S. Defense Threat Reduction Agency's University Research Alliances program as well as the Office of Naval Research. The agencies granted the funds to help generate cleaner, more efficient flight fuels.

Quantum chemistry calculations required to support the experimental observations in this study were performed in collaboration with UCR material scientists Hyuna Kwon and Bryan M. Wong.

"We've determined the fundamental chemistry that powers this fuel and oxidizer combination," Biswas said. "Now we are looking forward to seeing how it performs at large scale."

Research Report: "Rerouting Pathways of Solid-State Ammonia Borane Energy Release"


Related Links
University of California - Riverside
Rocket Science News at Space-Travel.Com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROCKET SCIENCE
Astroscale U.S. and Orbit Fab sign first on-orbit satellite fuel sale agreement
Denver CO (SPX) Jan 12, 2022
Orbit Fab, the Gas Stations in Space refueling service provider and Astroscale U.S. Inc., the U.S. subsidiary of Astroscale Holdings Inc. and market leader in securing long-term orbital sustainability, has announced a commercial agreement to refuel Astroscale's Life Extension In-Orbit (LEXI) Servicer in geostationary orbit (GEO); LEXI is the first satellite designed to be refueled. Under the terms of this initial agreement, Orbit Fab's GEO fuel shuttle will resupply Astroscale's fleet of LEXI Serv ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROCKET SCIENCE
Northrop Grumman launches cargo ship to International Space Station

Coca-Cola launching new Starlight drink 'inspired by space'

Blue Origin to build more rockets amid expectations to tourist flights

Research project examines how humans live in space

ROCKET SCIENCE
Clean driving technology enables cleaner rocket fuel

Rocket Lab officially opens third launch pad, Next launch within a week

SpaceX successfully launches 46 Starlink satellites from Florida

Vaya Space completes first suborbital test flight

ROCKET SCIENCE
Dusty Flight 19 completed and looking ahead to Flight 20

Rocky Road offers plenty of tasty science bites during Sols 3391-3394

NASA's Perseverance celebrates first year on Mars by learning to run

Students with Perseverance receive messages from Mars

ROCKET SCIENCE
China to make 6 human spaceflights, rocket's maiden flight in 2022: blue book

China welcomes cooperation on space endeavors

China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

ROCKET SCIENCE
SpaceX to launch IoT tech demo satellites for Plan-S

Scottish Space Sector Charts Path to a Sustainable Future

Whitepaper highlights ground segment's critical role in satellite connectivity

Space sector set to create new jobs in Highland and Moray

ROCKET SCIENCE
Using artificial intelligence to find anomalies hiding in massive datasets

A new, inexpensive catalyst speeds the production of oxygen from water

Upcycling plastic into valuable materials could make recycling pay

SpaceX to launch SpaceLogistics Mission Extension Pod for Optus satellite

ROCKET SCIENCE
Day of Discovery: 7 Earth-Size Planets

Can a planet have a mind of its own?

Studying the next interstellar interloper with Webb

Researchers find evidence for existence of uneven circumstellar matter based on TESS data

ROCKET SCIENCE
New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.