. 24/7 Space News .
ENERGY TECH
First results of an upgraded device highlight lithium's value for producing fusion
by Staff Writers
Plainsboro NJ (SPX) Aug 03, 2020

stock illustration only

Lithium, the silvery metal that powers smart phones and helps treat bipolar disorders, could also play a significant role in the worldwide effort to harvest on Earth the safe, clean and virtually limitless fusion energy (link is external) that powers the sun and stars. First results of the extensively upgraded Lithium Tokamak Experiment-Beta (LTX-b) at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), demonstrate that the major enhancements operate as designed and improve the performance of the hot, charged plasma that will fuel future fusion reactors.

More fusion-relevant
The three-year upgrade turned what is now the LTX-b into a hotter, denser and more fusion-relevant device that will test how well coating all plasma-facing walls with liquid lithium can improve the confinement and increase the temperature of the plasma. "We achieved many of our initial engineering goals," said physicist Drew Elliott of Oak Ridge National Laboratory, a major collaborator of the LTX-b. Elliott, on long-term assignment to PPPL, served as lead author of the first results (link is external) paper reported in IEEE Transactions in Plasma Science.

Fusion reactions combine light elements in the form of plasma - the state of matter composed of free electrons and atomic nuclei that makes up 99% of the visible universe - to release enormous amounts of energy. Physicists around the world are seeking to duplicate and control fusion reactions to create boundless safe, carbon-free power to generate electricity.

Key features of the LTX-b, a smaller version of the widely used doughnut-shaped magnetic tokamak (link is external) facilities that house fusion reactions, include these factors: A powerful neutral beam injector to heat and fuel the plasma; a nearly doubled magnetic field compared with the previous device; and a twin evaporation system to fully coat liquid lithium on all the plasma-facing surfaces.

Matched predictions
Operation of the beam matched well with predictions of the fraction of power that it would deposit into the plasma, rather than simply shining through it. "We're looking to increase the power deposition toward 100% so that all the power we inject goes into the plasma," said Elliott, who led the optimization of the neutral beam, which is based on technology pioneered at ORNL in the 1970s. "That will be a big scientific push, in future campaigns."

The substantial enhancements aim to test whether the LTX-b can improve plasma performance beyond the notable achievements of its predecessor. These include the demonstration of temperatures that remain constant, or flat, all the way from the hot core of the plasma to the normally cool outer edge.

Such gradient-free temperature profiles, the first ever seen in a magnetic fusion facility in the previous device, stem from the ability of lithium to hold onto stray particles that leak from the core of the plasma and keep them from recycling back and cooling the edge and core of the plasma. Sustainment of the hot edge expands the volume of plasma available for fusion and the production of flat temperature prevents instabilities that reduce plasma confinement from developing.

Goals of the upgrade
"The goals of the upgrade are to determine whether very low recycling lithium walls can improve plasma confinement in a tokamak with neutral beam heating," said Dick Majeski, principal investigator for LTX-b. "If LTX-b is successful, we can move on to experiments on liquid lithium in the National Spherical Torus Experiment-Upgrade [NSTX-U]," the flagship fusion experiment at PPPL.

The initial run of the LTX-b demonstrated improvements that included the following:

+ Increased fueling and density of the plasma, major goals of the neutral beam injector;

+ Increased deposition of liquid lithium over more than 90% of the inner walls of the LTX-b;

+ Longer plasma discharges, or pulses, enabled by the strengthened magnetic field; and

+ Higher plasma current - a critical element that causes the magnetic field to spiral, which is necessary to confine the plasma.

Also installed in the upgrade are new plasma diagnostics that will further characterize the facility's expanded operating regime. And still to be commissioned are advanced diagnostics that will measure the precise profile of several plasma parameters.

"The addition of the neutral beam increases the input power to the plasma by an order of magnitude and has the potential of creating a fusion-relevant plasma regime with enhanced performance," said Phil Efthimion, head of PPPL's Plasma Science and Technology Department that includes the LTX-b. "Dick Majeski and the entire LTX-b team should be commended for completing this aggressive upgrade on budget and schedule.

Experts across the U.S.
The upgrade pulled from experts across the United States, including collaboration from PPPL, ORNL, Princeton University, the University of California, Los Angeles (UCLA), and the University of Tennessee, Knoxville, and provides a significant tool for fusion research.

"ORNL and PPPL have been partners in fusion science and technology for many years, and this continues that strong union," said Mickey Wade, director of ORNL's Fusion Energy Division. "LTX-b will allow the fusion community to dig deeper into the promise of lithium and what it could unlock in enabling practical fusion energy."

Majeski has big plans ahead. "In the future, we'd like to increase the pulse length of the neutral beam to provide a longer period of heating and fueling for the plasma," he said. "The beam adds a lot of flexibility to the experiment, and we want to take advantage of the new capabilities."


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Quest advances to recreate sun's energy on earth
Saint-Paul-Les-Durance, France (AFP) July 28, 2020
Fourteen years after receiving the official go-ahead, scientists on Tuesday began assembling a giant machine in southern France designed to demonstrate that nuclear fusion, the process which powers the sun, can be a safe and viable energy source on Earth. The groundbreaking multinational experiment, known as ITER, has seen components arrive in the tiny commune of Saint-Paul-les-Durance from production sites worldwide in recent months. They will now be painstakingly put together to complete what ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

Take Me to Mars

ENERGY TECH
Russia wants to return to Venus, build reusable rocket

SpaceX completes test flight of Mars rocket prototype

SpaceX launched 10th Starlink batch

Spaceflight and Benchmark sign green propulsion deal for Sherpa launcher

ENERGY TECH
NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

Lava tubes on Mars and the Moon are so wide they can host planetary bases

ENERGY TECH
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

ENERGY TECH
Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

SES selects SpaceX for launch of new C-Band satellites

SES selects ULA to launch two C-Band satellites to accelerate C-Band clearing

Hisdesat And XTAR Complete Transaction For XTAR-EUR Satellite

ENERGY TECH
Scientists find way to track space junk in daylight

At Aerospace: How Internships Went Virtual

First laser detection of space debris in daylight

Transforming e-waste into a strong, protective coating for metal

ENERGY TECH
Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

VLBA finds planet orbiting small, cool star

Surprisingly dense exoplanet challenges planet formation theories

Deep sea microbes dormant for 100 million years are hungry and ready to multiply

ENERGY TECH
Ammonia sparks unexpected, exotic lightning on Jupiter

Shallow Lightning and Mushballs reveal ammonia to Juno scientists

NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.