. 24/7 Space News .
EXO WORLDS
First building blocks of life on Earth was a big mess
by Staff Writers
Boston MA (SPX) Jan 23, 2020

Szostak believes the earliest cells developed on land in ponds or pools, potentially in volcanically active regions. Ultraviolet light, lightning strikes, and volcanic eruptions all could have helped spark the chemical reactions necessary for life formation.

When the Earth was born, it was a mess. Meteors and lightning storms likely bombarded the planet's surface where nothing except lifeless chemicals could survive. How life formed in this chemical mayhem is a mystery billions of years old. Now, a new study offers evidence that the first building blocks may have matched their environment, starting out messier than previously thought.

Life is built with three major components: RNA and DNA - the genetic code that, like construction managers, program how to run and reproduce cells - and proteins, the workers that carry out their instructions. Most likely, the first cells had all three pieces. Over time, they grew and replicated, competing in Darwin's game to create the diversity of life today: bacteria, fungi, wolves, whales and humans.

But first, RNA, DNA or proteins had to form without their partners. One common theory, known as the "RNA World" hypothesis, proposes that because RNA, unlike DNA, can self-replicate, that molecule may have come first. While recent studies discovered how the molecule's nucleotides - the A, C, G and U that form its backbone - could have formed from chemicals available on early Earth, some scientists believe the process may not have been such a straightforward path.

"Years ago, the naive idea that pools of pure concentrated ribonucleotides might be present on the primitive Earth was mocked by Leslie Orgel as 'the Molecular Biologist's Dream,'" said Jack Szostak, a Nobel Prize Laureate, professor of chemistry and chemical biology and genetics at Harvard University, and an investigator at the Howard Hughes Medical Institute. "But how relatively modern homogeneous RNA could emerge from a heterogeneous mixture of different starting materials was unknown."

In a paper published in the Journal of the American Chemical Society, Szostak and colleagues present a new model for how RNA could have emerged. Instead of a clean path, he and his team propose a Frankenstein-like beginning, with RNA growing out of a mixture of nucleotides with similar chemical structures: arabino- deoxy- and ribonucleotides (ANA, DNA, and RNA).

In the Earth's chemical melting pot, it's unlikely that a perfect version of RNA formed automatically. It's far more likely that many versions of nucleotides merged to form patchwork molecules with bits of both modern RNA and DNA, as well as largely defunct genetic molecules, such as ANA. These chimeras, like the monstrous hybrid lion, eagle and serpent creatures of Greek mythology, may have been the first steps toward today's RNA and DNA.

"Modern biology relies on relatively homogeneous building blocks to encode genetic information," said Seohyun Kim, a postdoctoral researcher in chemistry and first author on the paper. So, if Szostak and Kim are right and Frankenstein molecules came first, why did they evolve to homogeneous RNA?

Kim put them to the test: He pitted potential primordial hybrids against modern RNA, manually copying the chimeras to imitate the process of RNA replication. Pure RNA, he found, is just better - more efficient, more precise, and faster - than its heterogeneous counterparts.

In another surprising discovery, Kim found that the chimeric oligonucleotides - like ANA and DNA - could have helped RNA evolve the ability to copy itself. "Intriguingly," he said, "some of these variant ribonucleotides have been shown to be compatible with or even beneficial for the copying of RNA templates."

If the more efficient early version of RNA reproduced faster than its hybrid counterparts then, over time, it would out-populate its competitors. That's what the Szostak team theorizes happened in the primordial soup: Hybrids grew into modern RNA and DNA, which then outpaced their ancestors and, eventually, took over.

"No primordial pool of pure building blocks was needed," Szostak said.

"The intrinsic chemistry of RNA copying chemistry would result, over time, in the synthesis of increasingly homogeneous bits of RNA. The reason for this, as Seohyun has so clearly shown, is that when different kinds of nucleotides compete for the copying of a template strand, it is the RNA nucleotides that always win, and it is RNA that gets synthesized, not any of the related kinds of nucleic acids."

So far, the team has tested only a fraction of the possible variant nucleotides available on early Earth. So, like those first bits of messy RNA, their work has only just begun.

Research paper


Related Links
Harvard University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Astronomers reveal interstellar thread of one of life's building blocks
Munich, Germany (SPX) Jan 17, 2020
Phosphorus, present in our DNA and cell membranes, is an essential element for life as we know it. But how it arrived on the early Earth is something of a mystery. Astronomers have now traced the journey of phosphorus from star-forming regions to comets using the combined powers of ALMA and the European Space Agency's probe Rosetta. Their research shows, for the first time, where molecules containing phosphorus form, how this element is carried in comets, and how a particular molecule may have played a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Meir, Koch complete battery swaps to upgrade station power systems

Collins Aerospace to supply critical subsystems for NASA's Orion spacecraft

US tech sector sees only modest relief in China trade deal

In Seychelles, nature is prized above mass tourism

EXO WORLDS
Russia to supply US with six RD-180 rocket engines this year

Fire at Firefly Aerospace interrupts rocket test

Russia claims edge as US lags in hypersonic weapons development

Aerospike rocket engines are more efficient than classic ones

EXO WORLDS
Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

Nine finalists chosen in Mars 2020 rover naming contest

Could future homes on the Moon and Mars be made of fungi?

EXO WORLDS
China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

EXO WORLDS
Europe backs space sector investment with EUR 200 million of financing

Budget battle hampers EU in space

Lockheed Martin Ships Mobile Communications Satellite To Launch Site

Maxar Technologies to sell MDA to Northern Private Capital for CAD$1 Billion

EXO WORLDS
Copper Age Italy hosted large, complex networks of metal exchange

NASA funds AnalySwift, Purdue tech to speed up composite deployable structure design

Study reveals unexpected rise in potent greenhouse gas

No need to dig too deep to find gold

EXO WORLDS
Astronomers find a way to form 'fast and furious' planets around tiny stars

How the solar system got its 'Great Divide', and why it matters for life on Earth

First building blocks of life on Earth was a big mess

Astronomers reveal interstellar thread of one of life's building blocks

EXO WORLDS
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.