24/7 Space News
IRON AND ICE
Finding risky asteroids outshone by Sun
The NEOMIR orbiting observatory will act as an early warning system to detect and monitor any asteroid coming towards Earth from the Sun's direction. NEOMIR will be placed between the Sun and Earth, at the first Lagrange point (L1). Using a high-performance infrared detector, it will detect near-Earth objects with a diameter of over 20 metres at least three weeks in advance of potential Earth impact.
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
Finding risky asteroids outshone by Sun
by Staff Writers
Paris (ESA) Feb 20, 2023

No one saw the Chelyabinsk meteor of 15 February 2013 coming. Just after sunrise on a calm and sunny winter's day, a 20-metre asteroid struck the atmosphere over the Ural Mountains in Russia, at a speed of more than 18 km/s.

The relatively small rock approached Earth from very near the direction of the Sun, exploding in the atmosphere and creating a shockwave that damaged thousands of buildings, breaking windows and injuring roughly 1500 people from flying shards of glass. It was the largest asteroid to strike Earth in over a century.

Statistically, asteroids this size strike Earth about once every 50-100 years. Larger asteroids are far less common but - just ask the dinosaurs - do a great deal more damage. These are, fortunately, much easier to detect.

In fact, we have discovered almost all asteroids larger than 1 km in size. Small and medium-sized asteroids are more common, and can still do great damage, but warning times of a few days can be enough for local authorities to notify the public to keep away from windows or even to evacuate a local area.

With NEOMIR, we'll be prepared
Whether it's preparing for a mission to deflect a large asteroid years in advance or providing the data for local authorities to keep communities informed of airbursts weeks ahead, ESA's NEOMIR will fill a gap in our current asteroid detection capabilities.

Asteroids are visible because they reflect the Sun's light, which we can detect from Earth. However, the closer they get to the Sun, the harder they are to see. Asteroids crossing the face of the Sun are particularly difficult to detect, but from Earth we are also blind to asteroids near the Sun as they are outshone by its glare.

ESA's upcoming NEOMIR mission will be launched into orbit around the first Lagrange point (L1) between the Sun and Earth, remaining in the same position relative to the two bodies. This will give the telescope a constant view of asteroids that may come towards the Earth from the direction of the Sun.

Being situated outside of Earth's distorting atmosphere and with a telescope observing in infrared light, NEOMIR will monitor a close ring around the Sun that is impossible to observe from the ground. The mission will detect asteroids passing between Earth and the Sun - any that pose a threat and that we cannot currently see will have to pass through this ring.

By making observations in the infrared part of the light spectrum, NEOMIR will detect the heat emitted by asteroids themselves, which isn't drowned out by sunlight. This thermal emission is absorbed by Earth's atmosphere, but from space NEOMIR will be able to see closer to the Sun than we can currently from Earth.

Asteroids 20 metres and larger that are heading toward Earth should be detected by NEOMIR at least three weeks in advance. In the worst-case scenario, in which the asteroid is spotted passing near the spacecraft, we would get a minimum of three days' warning - the fastest the asteroid could move from L1 to Earth.

Current status
Details of the Space Safety Programme's NEOMIR mission are currently being fleshed out and it is planned to be launched around 2030 with an Ariane 6-2 rocket.

An initial study to assess the feasibility of the NEOMIR mission was conducted by ESA's Concurrent Design Facility in the Netherlands, in 2021. The study focused on defining a mission that would complement NASA's NEO Surveyor mission. The US-funded mission should fulfil the US Congress mandate to discover 90% of near-Earth objects larger than 140-metres in diameter, while NEOMIR is designed to focus on imminent impactors of any size.

NEOMIR is currently early mission study phase. It will require a half-metre telescope with a large, corrected focal plane, as well as two infrared channels covering light in the 5-10 micrometre waveband.

The required detector technologies and associated electronics for this novel mission are currently under development. Industrial research and development projects are planned as supporting activities in parallel.

The requirements will be to deliver a similar performance to the 'NEO Surveyor detectors', i.e., Teledyne's HxRG, which are in use in the James Webb Space Telescope (NIRSpec) and ESA's Euclid (NISP) and Ariel missions, although at shorter wavelengths.

Related Links
Planetary Defence at ESA
Asteroid and Comet Mission News, Science and Technology

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
IRON AND ICE
Chelyabinsk a decade on: spotting invisible asteroids 'from the Sun'?
Paris (ESA) Feb 16, 2023
No one saw the Chelyabinsk meteor of 15 February 2013 coming - the largest asteroid to strike Earth in over a century. Just after sunrise on a sunny winter's day, a 20-metre, 13 000 tonne asteroid struck the atmosphere over the Ural Mountains in Russia at a speed of more than 18 km/s. The relatively small rock exploded in the atmosphere at an altitude of 30 km, releasing about half a megaton of energy (equivalent to 35 Hiroshima-sized bombs). Two minutes later, the shockwave reached the ground dam ... read more

ADVERTISEMENT
ADVERTISEMENT
IRON AND ICE
Russia claims Progress leak caused by an "external impact"

Russian rescue mission for three space station astronauts set this week

Russia 'expected' to launch rescue ship to ISS on Feb 24: official

Farming on the Moon

IRON AND ICE
World's first 3D-printed rocket Terran 1 is ready for its maiden flight

Inmarsat-6 F2 marks 12th SpaceX launch of 2023

SpaceX launches Falcon 9 rocket from Florida, part of Inmarsat program

SpaceX Endeavour's crew arrive at KSC ahead of launch

IRON AND ICE
Perseverance set to begin third year on Mars at Jezero Crater

Better tools needed to determine ancient life on Mars

When data show up late: Sols 3746-3748

Sols 3744-3745: The One That Got Away

IRON AND ICE
China's space station experiments pave way for new space technology

China solicits logos for manned space missions in 2023

Two crews set for Tiangong station in '23

Large number of launches planned

IRON AND ICE
Yahsat and Cobham SATCOM complete CDR for Thuraya's Next satellite

New transmitter design for small satellite constellations improves signal transmission

Fortuna Investments announces US expansion and first space investment

Space Daily retools to AI/ML centric Content Management System

IRON AND ICE
Low power Ka-band transmitters on Earth observation satellites

Radiation-resistant Ka-band radio for LEO constellation offers speeds Beyond 5G

Exploring the Valley of the Kings with radar

D-Orbit signs launch contract with Patriot Infovention

IRON AND ICE
CARMENES project boosts the number of known planets in the solar neighbourhood

"Forbidden" planet orbiting small star challenges gas giant formation theories

Very Large Telescope captures direct images of bright exoplanet

Does ice in the Universe contain the molecules making up the building blocks of life in planetary systems?

IRON AND ICE
Newly discovered form of salty ice could exist on surface of extraterrestrial moons

New aurorae detected on Jupiter's four largest moons

JUICE's final take-off before lift-off

A new ring system discovered in our Solar System

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.