. 24/7 Space News .
STELLAR CHEMISTRY
Family tree of the Milky Way deciphered
by Staff Writers
London, UK (SPX) Nov 16, 2020

Galaxy merger tree of the Milky Way inferred by applying the insights gained from the E-MOSAICS simulations to the Galactic globular cluster population. The main progenitor of the Milky Way is denoted by the trunk of the tree, coloured by its stellar mass. Black lines indicate the five identified satellites. Grey dotted lines illustrate other mergers that the Milky Way is predicted to have experienced, but could not be linked to a specific progenitor. From left to right, the six images along the top of the figure indicate the identified progenitor galaxies: Sagittarius, Sequoia, Kraken, the Milky Way's Main progenitor, the progenitor of the Helmi streams, and Gaia-Enceladus-Sausage.

Scientists have known for some time that galaxies can grow by the merging of smaller galaxies, but the ancestry of our own Milky Way galaxy has been a long-standing mystery. Now, an international team of astrophysicists has succeeded in reconstructing the first complete family tree of our home galaxy by analysing the properties of globular clusters orbiting the Milky Way with artificial intelligence. The work is published in Monthly Notices of the Royal Astronomical Society.

Globular clusters are dense groups of up to a million stars that are almost as old as the Universe itself. The Milky Way hosts over 150 such clusters, many of which formed in the smaller galaxies that merged to form the galaxy that we live in today. Astronomers have suspected for decades that the old ages of globular clusters would mean that they could be used as "fossils" to reconstruct the early assembly histories of galaxies. However it is only with the latest models and observations that it has become possible to realise this promise.

An international team of researchers led by Dr Diederik Kruijssen at the Center for Astronomy at the University of Heidelberg (ZAH) and Dr Joel Pfeffer at Liverpool John Moores University has now managed to infer the Milky Way's merger history and reconstruct its family tree, using only its globular clusters.

To achieve this, they developed a suite of advanced computer simulations of the formation of Milky Way-like galaxies. Their simulations, called E-MOSAICS, are unique because they include a complete model for the formation, evolution, and destruction of globular clusters.

In the simulations, the researchers were able to relate the ages, chemical compositions, and orbital motions of globular clusters to the properties of the progenitor galaxies in which they formed, more than 10 billion years ago. By applying these insights to groups of globular clusters in the Milky Way, they could not only determine how many stars these progenitor galaxies contained, but also when they merged into the Milky Way.

"The main challenge of connecting the properties of globular clusters to the merger history of their host galaxy has always been that galaxy assembly is an extremely messy process, during which the orbits of the globular clusters are completely reshuffled," Kruijssen explains.

"To make sense of the complex system that is left today, we therefore decided to use artificial intelligence. We trained an artificial neural network on the E-MOSAICS simulations to relate the globular cluster properties to the host galaxy merger history. We tested the algorithm tens of thousands of times on the simulations and were amazed at how accurately it was able to reconstruct the merger histories of the simulated galaxies, using only their globular cluster populations."

Inspired by this success, the researchers set out to decipher the merger history of the Milky Way. To achieve this, they used groups of globular clusters that are each thought to have formed in the same progenitor galaxy based on their orbital motion.

By applying the neural network to these groups of globular clusters, the researchers could not only predict the stellar masses and merger times of the progenitor galaxies to high precision, but it also revealed a previously unknown collision between the Milky Way and an enigmatic galaxy, which the researchers named "Kraken".

"The collision with Kraken must have been the most significant merger the Milky Way ever experienced," Kruijssen adds. "Before, it was thought that a collision with the Gaia-Enceladus-Sausage galaxy, which took place some 9 billion years ago, was the biggest collision event.

However, the merger with Kraken took place 11 billion years ago, when the Milky Way was four times less massive. As a result, the collision with Kraken must have truly transformed what the Milky Way looked like at the time."

Taken together, these findings allowed the team of researchers to reconstruct the first complete merger tree of our Galaxy. Over the course of its history, the Milky Way cannibalised about five galaxies with more than 100 million stars, and about fifteen with at least 10 million stars. The most massive progenitor galaxies collided with the Milky Way between 6 and 11 billion years ago.

The researchers expect their predictions to stimulate future studies to search for the remains of these progenitor galaxies. "The debris of more than five progenitor galaxies has now been identified. With current and upcoming telescopes, it should be possible to find them all," Kruijssen concludes.

Research Report: "Kraken reveals itself - the merger history of the Milky Way reconstructed with the E-MOSAICS simulations"


Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Playing detective on a galactic scale: huge new dataset will solve multiple Milky Way mysteries
Canberra, Australia (SPX) Nov 06, 2020
How do stars destroy lithium? Was a drastic change in the shape of the Milky Way caused by the sudden arrival of millions of stellar stowaways? These are just a couple of the astronomical questions likely to be answered following the release of 'GALAH DR3', the largest set of stellar chemical data ever compiled. The data, comprising more than 500 GB of information gleaned from more than 30 million individual measurements, was gathered by astronomers including Sven Buder, Sarah Martell and Sa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
The Personal Preference Kit: What Astronauts Take With Them To Space

NASA Commercial Crew program kicks off spaceflight renaissance

Dartmouth to conduct ISS research with NSF grant

Crops bred in space produce heavenly results

STELLAR CHEMISTRY
Astronauts board ISS from SpaceX's 'Resilience'

NIST designs a prototype fuel gauge for orbit

European space rocket launch fails minutes after takeoff

Spaceflight unveils propulsive orbital transfer vehicles for custom orbital destinations

STELLAR CHEMISTRY
NASA rover has less than 100 days until reaching the red planet

Mars Is Getting a New Robotic Meteorologist

Preparing for a human mission to Mars

Gravity Assist: Mars Takes a Breath, with Jen Eigenbrode

STELLAR CHEMISTRY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

STELLAR CHEMISTRY
China launches new mobile telecommunication satellite

EMXYS news release Series A funding round closed

Telesat finalizes deal with Canadian Government to bridge Canada's digital divide

Kleos Space raises 13.8 million USD to progress next satellite clusters

STELLAR CHEMISTRY
3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

New PlayStation hits market as console battle with Xbox begins

Smaller than ever - exploring the unusual properties of quantum-sized materials

Smart concrete could pave the way for high-tech, cost-effective roads

STELLAR CHEMISTRY
Life's building blocks can form in interstellar clouds without stellar fusion

Climate Stabilization on Distant Worlds

Cysteine synthesis was a key step in the origin of life

Ariel moves from blueprint to reality

STELLAR CHEMISTRY
Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto

Where were Jupiter and Saturn born?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.