. 24/7 Space News .
EXO WORLDS
Cysteine synthesis was a key step in the origin of life
by Staff Writers
London, UK (SPX) Nov 13, 2020

In an important step during the early evolution of life on Earth, the formation of the amino acid cysteine delivered vital catalysts, which enabled the earliest protein molecules to form in water, according to a new study by UCL researchers. (stock image only)

In an important step during the early evolution of life on Earth, the formation of the amino acid cysteine delivered vital catalysts, which enabled the earliest protein molecules to form in water, according to a new study by UCL researchers.

All proteins are built from the same 20 amino acids. One of these, cysteine, was assumed not to have been present at the origin of life. Despite its fundamental importance to all life today, it was unclear how cysteine might have formed on the early Earth.

In a new study, published in Science, UCL scientists have recreated how cysteine was formed at the origins of life. Additionally, they have observed how, once formed, cysteine catalyses the fusion of peptides in water - a fundamental step in the path towards protein enzymes.

The UCL researchers created cysteine using very simple chemistry and chemicals - hydrogen cyanide and hydrogen sulfide - that were likely to be abundant on the early Earth. The route that they have unravelled closely resembles how cysteine is synthesised in living organisms today, and the researchers believe they are historically linked.

The study also found that cysteine residues catalyse peptide synthesis in water by joining together short peptide fragments that the team had previously found in a study published in Nature* last year.

Senior author Professor Matthew Powner (UCL Chemistry) said: "Our results show how cysteine may have formed on the early Earth and how it could have played a critical role in the evolution of protein synthesis.

"Once formed, cysteine catalysts behave as 'proto-enzymes' to produce peptides in water. This robust chemistry could have generated peptides long enough to fold into enzyme-like structures, which would be the precursors to the protein enzymes that are fundamental to all living organisms."

Co-lead author and Research Fellow Dr Saidul Islam (UCL Chemistry) said: "We have shown that nitriles possess the in-built energy required to form peptide bonds in water. This is the simplest way of making peptides that works with all of the 20 amino acids, which makes it all the more incredible.

"It is precisely the sort of simple, yet special, chemistry that was essential to kick-start life several billion years ago. Our study provides further evidence that the molecules of life descended from nitrile chemistry on the early Earth."

Co-lead author Dr Callum Foden, who completed the work while a PhD student at UCL, said: "The peptide synthesis we discovered is simple, highly selective and uses molecules that were available on the early Earth.

"A single cysteine residue is enough to produce robust catalytic activity. It is remarkable that such small molecules can carry out such an important (bio)chemical reaction, selectively in water, at neutral pH, and in such high yields."

Discussing further implications of their study, Professor Powner said: "We have resolved a long-standing problem for the origin of life by providing a simple solution to catalytic peptide synthesis in water. Importantly, the catalysts are built only from biology's amino acids. Understanding how cysteine could have controlled the formation of Earth's earliest peptides has made the long path from chemistry to a living organism seem a little shorter, and a little less daunting.

"Our study suggests cysteine was first introduced into life's peptides by modification of serine (another of life's amino acids). This now raises important questions about the early evolution and coding of peptide synthesis. Cysteine is widely assumed not to have been present in life's first genetic code, and this fits neatly with our observations. Our results indicate that encoded serine could furnish cysteine peptides, leading to a key role for cysteine in evolution even before it was assigned to life's genetic code."

Research paper


Related Links
University College London
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Microbial space travel on a molecular scale
Vienna, Austria (SPX) Nov 05, 2020
Since the dawn of space exploration, humankind has been fascinated by survival of terrestrial life in outer space. Outer space is a hostile environment for any form of life, but some extraordinarily resistant microorganisms can survive. Such extremophiles may migrate between planets and distribute life across the Universe, underlying the panspermia hypothesis or interplanetary transfer of life. The extremophilic bacterium Deinococcus radiodurans withstands the drastic influence of outer space: gal ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
The Personal Preference Kit: What Astronauts Take With Them To Space

NASA Commercial Crew program kicks off spaceflight renaissance

Dartmouth to conduct ISS research with NSF grant

Crops bred in space produce heavenly results

EXO WORLDS
Astronauts board ISS from SpaceX's 'Resilience'

NIST designs a prototype fuel gauge for orbit

European space rocket launch fails minutes after takeoff

Spaceflight unveils propulsive orbital transfer vehicles for custom orbital destinations

EXO WORLDS
NASA rover has less than 100 days until reaching the red planet

Mars Is Getting a New Robotic Meteorologist

Preparing for a human mission to Mars

Gravity Assist: Mars Takes a Breath, with Jen Eigenbrode

EXO WORLDS
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

EXO WORLDS
China launches new mobile telecommunication satellite

EMXYS news release Series A funding round closed

Telesat finalizes deal with Canadian Government to bridge Canada's digital divide

Kleos Space raises 13.8 million USD to progress next satellite clusters

EXO WORLDS
3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

New PlayStation hits market as console battle with Xbox begins

Smaller than ever - exploring the unusual properties of quantum-sized materials

Smart concrete could pave the way for high-tech, cost-effective roads

EXO WORLDS
Life's building blocks can form in interstellar clouds without stellar fusion

Climate Stabilization on Distant Worlds

Cysteine synthesis was a key step in the origin of life

Ariel moves from blueprint to reality

EXO WORLDS
Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto

Where were Jupiter and Saturn born?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.