. | . |
Fabrication of flexible electronics improved using gold and water-vapor plasma by Staff Writers Tokyo, Japan (SPX) Jan 01, 2022
Researchers at the RIKEN Center for Emergent Matter Science (CEMS) and the RIKEN Cluster for Pioneering Research (CPR) in Japan have developed a technique to improve the flexibility of ultra-thin electronics, such as those used in bendable devices or clothing. Published in Science Advances, the study details the use of water vapor plasma to directly bond gold electrodes fixed onto separate ultra-thin polymer films, without needing adhesives or high temperatures. As electronic devices get smaller and smaller, and the desire to have bendable, wearable, and on-skin electronics increases, conventional methods of constructing these devices have become impractical. One of the biggest problems is how to connect and integrate multiple devices or pieces of a device that each reside on separate ultra-thin polymer films. Conventional methods that use layers of adhesive to stick electrodes together reduce flexibility and require temperature and pressure that are damaging to super-thin electronics. Conventional methods of direct metal-to-metal bonding are available, but require perfectly smooth and clean surfaces that are not typical in these types of electronics. A team of researchers led by Takao Someya at RIKEN CEMS/CPR has developed a new method to secure these connections that does not use adhesive, high temperature, or high pressure, and does not require totally smooth or clean surfaces. In fact, the process takes less than a minute at room temperature, followed by about a 12-hour wait. The new technique, called water-vapor plasma-assisted bonding, creates stable bonds between gold electrodes that are printed into ultra-thin-2 thousandths of a millimeter!-polymer sheets using a thermal evaporator. "This is the first demonstration of ultra-thin, flexible gold electronics fabricated without any adhesive," says Senior Research Scientist Kenjiro Fukuda of RIKEN CEMS/CPR. "Using this new direct bond technology, we were able to fabricate an integrated system of flexible organic solar cells and organic LEDs." Experiments showed that water-vapor plasma-assisted bonding performed better that conventional adhesive or direct bonding techniques. In particular, the strength and consistency of the bonds were greater than what standard surface-assisted direct bonding achieved. At the same time, the material conformed better to curved surfaces and was more durable than what could be achieved using a standard adhesive technique. According to Fukuda, the method itself is surprisingly simple, which might explain why they discovered it by accident. After fixing the gold electrodes onto polymer sheets, a machine is used to expose the electrode sides of the sheets to water-vapor plasma for 40 seconds. Then, the polymer sheets are pressed together so that the electrodes overlap in the correct location. After waiting 12 hours in room temperature, they are ready to use. Another advantage of this system is that after activation with water-vapor plasma, but before being bonded together, the films can be stored in vacuum packs for days. This is an important practical aspect when considering the potential for ordering and distributing pre-activated components. As proof of concept, the team integrated ultra-thin organic photovoltaic and LED-light modules that were printed on separate films and connected by five additional polymer films. The devices withstood extensive testing, including being wrapped around a stick and being crumpled and twisted to extremes. Additionally, the power efficiency of the LEDs did not suffer from the treatment. The technique was also able to join pre-packaged LED chips to a flexible surface. "We expect this new method to become a flexible wiring and mounting technology for next-generation wearable electronics that can be attached to clothes and skin," says Fukuda. "The next step is to develop this technology for use with cheaper metals, such as copper or aluminum."
Research Report: "Takakuwa et al (2021) Direct gold bonding for flexible integrated electronics"
Step forward in quest to develop living construction materials and beyond Minneapolis MN (SPX) Dec 30, 2021 Some engineered living materials can combine the strength of run-of-the-mill building materials with the responsiveness of living systems. Think self-healing concrete, paint that changes color when a specific chemical is detected or material that could reproduce and fill in a crack when one forms. This would revolutionize construction and maintenance, with wide-reaching economic and environmental implications. Seeing this new category of adaptive materials on consumer shelves may be a ways off. St ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |