|
. | . |
|
by Staff Writers Lemont IL (SPX) Sep 13, 2015
Using metallic osmium (Os) in experimentation, an international group of researchers have demonstrated that ultra-high pressures cause core electrons to interplay, which results in experimentally observed anomalies in the compression behavior of the material. Os is one of Earth's most exceptional elemental materials, possessing the highest known density at ambient pressure, one of the highest cohesive energies and melting temperatures, and an incompressibility that is almost comparable to that of diamond. Researchers believe that the ability to affect core electrons - which do not participate in chemical bonding - in metals like osmium will open new opportunities in the search for new states of matter and the synthesis of materials with unique properties that do not exist at ambient conditions. "The international research team employed extreme conditions that generated a measurable change in osmium's high pressure behavior," said Vitali Prakapenka, a scientist at the University of Chicago's GeoSoilEnviros Center for Advanced Radiation Sources (GSECARS) beamline at the Advanced Photon Source (APS), a U.S. Department of Energy's (DOE) Office of Science User Facility at DOE's Argonne National Laboratory. "Although the theoretically predicted electronic transition that involves pressure-induced interaction between core (inner) electrons is much weaker than typical structural changes associated with valence (outer) electrons, we were able to detect experimentally changes in properties of this highly-compressed material which are related to the predicted phenomenon," said Leonid Dubrovinsky of the Bayerisches Geoinstitut (BGI) at Bayreuth University in Germany. "We used micro-anvils made of super hard nano-diamond to generate 770 gigapascals of pressure (more than 7 million of atmospheres, i.e. twice that of the center of the Earth) on the osmium sample," BGI's Natalia Dubrovinskaia said. The device for generating ultra-high static pressures - a two-stage diamond anvil cell - was developed by Dubrovinsky and Dubrovinskaia, who published this research technique in 2012. "Measuring the effect of ultra-high pressure required very accurate structural X-ray diffraction experiments to reveal the anomalous behavior of the lattice parameters upon compression," Prakapenka said. "We used state-of-the-art synchrotron techniques capable of penetrating bulky pressure vessels to probe tiny samples with a typical size of around 1-4 microns. We have used a very intense tightly focused high-energy X-ray beam that is only available at third-generation synchrotron facilities." The research is detailed in the paper "The most incompressible metal osmium at static pressure above 750 gigapascals," published in Nature. The research team members are: L. Dubrovinsky, N. Dubrovinskaia,E. Bykova, and M. Bykov of the University of Bayreuth, Germany; V. Prakapenka and C. Prescher of the University of Chicago, Illinois; K. Glazyrin and H.P. Liermann of the Deutsches Elektronen Synchrotron, Germany; M. Hanfland of the European Synchrotron Radiation Facility, France; M. Elkhorn and Q. Feng of the Linkoping University, Sweden; L.V. Pourovskii of the Linkoping University and Centre de Physique Theorique, a joint center of the Centre National de la Recherche Scientifique and the E'cole Polytechnique, France; M.I Katsnelson of Radboud University, The Netherlands, and Ural Federal University, Russia; J.M. Wills of Los Alamos National Laboratory, New Mexico and I.A. Abrikosov, of the National University of Science and Technology, Russia, and Linkoping University.
Related Links Argonne National Laboratory Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |