Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Paper tubes make stiff origami structures
by Staff Writers
Champaign IL (SPX) Sep 08, 2015


Origami 'zipper tubes' interlocking zigzag paper tubes, can be configured to build a variety of structures that have stiffness and function, but can fold compactly for storage or shipping. Image courtesy Rob Felt. For a larger version of this image please go here.

From shipping and construction to outer space, origami could put a folded twist on structural engineering.

Researchers from the University of Illinois at Urbana-Champaign, the Georgia Institute of Technology and the University of Tokyo have developed a new "zippered tube" configuration that makes paper structures that are stiff enough to hold weight yet can fold flat for easy shipping and storage. Their method could be applied to other thin materials, such as plastic or metal, to transform structures from furniture to buildings to microscopic robots.

Illinois graduate researcher Evgueni Filipov, Georgia Tech professor Glaucio Paulino and University of Tokyo professor Tomohiro Tachi published their work in the Proceedings of the National Academy of Sciences.

Origami structures would be useful in many engineering and everyday applications, such as a robotic arm that could reach out and scrunch up, a construction crane that could fold to pick up or deliver a load, or pop-up furniture. Paulino sees particular potential for quick-assembling emergency shelters, bridges and other infrastructure in the wake of a natural disaster.

"Origami became more of an objective for engineering and a science just in the last five years or so," Filipov said. "A lot of it was driven by space exploration, to be able to launch structures compactly and deploy them in space. But we're starting to see how it has potential for a lot of different fields of engineering. You could prefabricate something in a factory, ship it compactly and deploy it on site."

The researchers use a particular origami technique called Miura-ori folding. They make precise, zigzag-folded strips of paper, then glue two strips together to make a tube. While the single strip of paper is highly flexible, the tube is stiffer and does not fold in as many directions.

The researchers tried coupling tubes in different configurations to see if that added to the structural stiffness of the paper structures. They found that interlocking two tubes in zipper-like fashion made them much stiffer and harder to twist or bend. The structure folds up flat, yet rapidly and easily expands to the rigid tube configuration.

"The geometry really plays a role," said Paulino, a former Illinois professor of civil and environmental engineering. "We are putting two tubes together in a strange way. What we want is a structure that is flexible and stiff at the same time. This is just paper, but it has tremendous stiffness."

The zipper configuration works even with tubes that have different angles of folding. By combining tubes with different geometries, the researchers can make many different three-dimensional structures, such as a bridge, a canopy or a tower.

"The ability to change functionality in real time is a real advantage in origami," Filipov said. "By having these transformable structures, you can change their functionality and make them adaptable. They are reconfigurable. You can change the material characteristics: You can make them stiffer or softer depending on the intended use."

The team uses paper prototypes to demonstrate how a thin, flexible sheet can be folded into functional structures, but their techniques could be applied to other thin materials, Filipov said. Larger-scale applications could combine metal or plastic panels with hinges.

Next, the researchers plan to explore new combinations of tubes with different folding angles to build new structures. They also hope to apply their techniques to other materials and explore applications from large-scale construction to microscopic structures for biomedical devices or robotics.

"All of these ideas apply from the nanoscale and microscale up to large scales and even structures that NASA would deploy into space," Paulino said. "Depending on your interest, the applications are endless. We have just scratched the surface. Once you have a powerful concept, which we think the zipper coupling is, you can explore applications in many different areas."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois at Urbana-Champaign
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
An engineered surface unsticks sticky water droplets
University Park PA (SPX) Sep 02, 2015
The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particul ... read more


TECH SPACE
Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

TECH SPACE
ASU instruments help scientists probe ancient Mars atmosphere

Opportunity brushes a rock and conducts in-situ studies

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

One year and counting: Mars isolation experiment begins

TECH SPACE
In Virginia, TechShop lets 'makers' tinker, innovate

New Russian Spaceship to Be Ready Ahead of Schedule

Annoying? US 'That Kissed the Moon' Has to Pay Russia for Space Flights

French woman wins disability grant for 'gadget allergy'

TECH SPACE
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

TECH SPACE
First Dane in space begins long trip to repositioned ISS

ISS Crew Redocks Soyuz Spacecraft

CALET docks on the International Space Station

Astronaut Andreas to try sub-millimetre precision task on Earth from orbit

TECH SPACE
FCube facility enters operations with fueling of Soyuz Fregat upper stage

SpaceX delays next launch after blast

GSLV Launches India's Latest Communication Satellite GSAT-6

Preparations with both passengers ongoing at Kourou

TECH SPACE
Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

Solar System formation don't mean a thing without that spin

TECH SPACE
Paper tubes make stiff origami structures

Long-sought chiral anomaly detected in crystalline material

Metallic gels produce tunable light emission

An engineered surface unsticks sticky water droplets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.