. | . |
Extreme exoplanet has a complex and exotic atmosphere by Staff Writers Bern, Switzerland (SPX) Jan 28, 2022
An international team including researchers from the University of Bern and the University of Geneva as well as the National Centre of Competence in Research (NCCR) PlanetS analyzed the atmosphere of one of the most extreme known planets in great detail. The results from this hot, Jupiter-like planet that was first characterized with the help of the CHEOPS space telescope, may help astronomers understand the complexities of many other exoplanets - including Earth-like planets. The atmosphere of Earth is not a uniform envelope but consists of distinct layers that each have characteristic properties. The lowest layer that spans from sea level beyond the highest mountain peaks, for example - the troposphere -, contains most of the water vapour and is thus the layer in which most weather phenomena occur. The layer above it - the stratosphere - is the one that contains the famous ozone layer that shields us from the Sun's harmful ultraviolet radiation. In a new study that appeared in the journal Nature Astronomy, an international team of researchers led by the University of Lund show for the first time that the atmosphere of one of the most extreme known planets may have similarly distinct layers as well - albeit with very different characteristics.
An exotic cocktail for an atmosphere "We measured the light coming from the planet's host star and passing through the planet's atmosphere. The gases in its atmosphere absorb some of the starlight, similar to Ozone absorbing some of the sunlight in Earth's atmosphere, and thereby leave their characteristic 'fingerprint'. With the help of HARPS, we were able to identify the corresponding substances", lead author of the study and doctoral student at Lund University, Bibiana Prinoth, explains. According to the researchers, the gases that left their fingerprints in the atmosphere of WASP-189b included iron, chromium, vanadium, magnesium and manganese.
An "Ozone layer" on a blisteringly hot planet? "Titanium oxide absorbs short wave radiation, such as ultraviolet radiation. Its detection could therefore indicate a layer in the atmosphere of WASP-189b that interacts with the stellar irradiation similarly to how the Ozone layer does on Earth", study co-author Kevin Heng, a professor of astrophysics at the University of Bern and a member of the NCCR PlanetS, explains. Indeed, the researchers found hints of such a layer and other layers on the ultra-hot Jupiter-like planet. "In our analysis, we saw that the 'fingerprints' of the different gases were slightly altered compared to our expectation. We believe that strong winds and other processes could generate these alterations. And because the fingerprints of different gases were altered in different ways, we think that this indicates that they exist in different layers - similarly to how the fingerprints of water vapour and ozone on Earth would appear differently altered from a distance, because they mostly occur in different atmospheric layers", Prinoth explains. These results may change how astronomers investigate exoplanets.
A different way to look at exoplanets "We are convinced that to be able to fully understand these and other types of planets - including ones more similar to Earth, we need to appreciate the three-dimensional nature of their atmospheres. This requires innovations in data analysis techniques, computer modelling and fundamental atmospheric theory", Kevin Heng concludes.
Research Report: "Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |