. 24/7 Space News .
CARBON WORLDS
Experiments with twisted 2D materials catch electrons behaving collectively
by Staff Writers
Seattle WA (SPX) Oct 07, 2020

Optical microscopy image of a twisted double bilayer graphene device.

Scientists can have ambitious goals: curing disease, exploring distant worlds, clean-energy revolutions. In physics and materials research, some of these ambitious goals are to make ordinary-sounding objects with extraordinary properties: wires that can transport power without any energy loss, or quantum computers that can perform complex calculations that today's computers cannot achieve. And the emerging workbenches for the experiments that gradually move us toward these goals are 2D materials - sheets of material that are a single layer of atoms thick.

In a paper published Sept. 14 in the journal Nature Physics, a team led by the University of Washington reports that carefully constructed stacks of graphene - a 2D form of carbon - can exhibit highly correlated electron properties. The team also found evidence that this type of collective behavior likely relates to the emergence of exotic magnetic states.

"We've created an experimental setup that allows us to manipulate electrons in the graphene layers in a number of exciting new ways," said co-senior author Matthew Yankowitz, a UW assistant professor of physics and of materials science and engineering, as well as a faculty researcher at the UW's Clean Energy Institute.

Yankowitz led the team with co-senior author Xiaodong Xu, a UW professor of physics and of materials science and engineering. Xu is also a faculty researcher with the UW Molecular Engineering and Sciences Institute, the UW Institute for Nano-Engineered Systems and the UW Clean Energy Institute.

Since 2D materials are one layer of atoms thick, bonds between atoms only form in two dimensions and particles like electrons can only move like pieces on a board game: side-to-side, front-to-back or diagonally, but not up or down.

These restrictions can imbue 2D materials with properties that their 3D counterparts lack, and scientists have been probing 2D sheets of different materials to characterize and understand these potentially useful qualities.

But over the past decade, scientists like Yankowitz have also started layering 2D materials - like a stack of pancakes - and have discovered that, if stacked and rotated in a particular configuration and exposed to extremely low temperatures, these layers can exhibit exotic and unexpected properties.

The UW team worked with building blocks of bilayer graphene: two sheets of graphene naturally layered together. They stacked one bilayer on top of another - for a total of four graphene layers - and twisted them so that the layout of carbon atoms between the two bilayers were slightly out of alignment.

Past research has shown that introducing these small twist angles between single layers or bilayers of graphene can have big consequences for the behavior of their electrons. With specific configurations of the electric field and charge distribution across the stacked bilayers, electrons display highly correlated behaviors. In other words, they all start doing the same thing - or displaying the same properties - at the same time.

"In these instances, it no longer makes sense to describe what an individual electron is doing, but what all electrons are doing at once," said Yankowitz.

"It's like having a room full of people in which a change in any one person's behavior will cause everyone else to react similarly," said lead author Minhao He, a UW doctoral student in physics and a former Clean Energy Institute fellow.

Quantum mechanics underlies these correlated properties, and since the stacked graphene bilayers have a density of more than 10^12, or one trillion, electrons per square centimeter, a lot of electrons are behaving collectively.

The team sought to unravel some of the mysteries of the correlated states in their experimental setup. At temperatures of just a few degrees above absolute zero, the team discovered that they could "tune" the system into a type of correlated insulating state - where it would conduct no electrical charge. Near these insulating states, the team found pockets of highly conducting states with features resembling superconductivity.

Though other teams have recently reported these states, the origins of these features remained a mystery. But the UW team's work has found evidence for a possible explanation. They found that these states appeared to be driven by a quantum mechanical property of electrons called "spin" - a type of angular momentum.

In regions near the correlated insulating states, they found evidence that all the electron spins spontaneously align. This may indicate that, near the regions showing correlated insulating states, a form of ferromagnetism is emerging - not superconductivity. But additional experiments would need to verify this.

These discoveries are the latest example of the many surprises that are in store when conducting experiments with 2D materials.

"Much of what we're doing in this line of research is to try to create, understand and control emerging electronic states, which can be either correlated or topological, or possess both properties," said Xu. "There could be a lot we can do with these states down the road - a form of quantum computing, a new energy-harvesting device, or some new types of sensors, for example - and frankly we won't know until we try."

In the meantime, expect stacks, bilayers and twist angles to keep making waves.

Research paper


Related Links
University Of Washington
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
New Insights into the Origin of Diamonds in Meteorites
Houston TX (SPX) Sep 29, 2020
Scientists have offered new insights into the origin of diamonds in ureilites (a group of stony meteorites). These diamonds most likely formed by rapid shock transformation from graphite (the common low-pressure form of pure carbon) during one or more major impacts into the ureilite parent asteroid in the early solar system. Previously, researchers have proposed that diamonds in ureilites formed like those on Earth - deep in the mantle of the planet, where the high pressures needed to form diamond ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
ISS Crew continues troubleshooting as tests isolate small leak

Russia reports 'non-standard' air leak on Space Station

Trump tech war with China changes the game for US business

ISS moves to avoid space debris

CARBON WORLDS
SpaceX aborts Starlink satellite launch attempt

Gryphon Technologies wins $14M DARPA task order to support the DRACO program

NASA, SpaceX to launch first Commercial Crew rotation mission to International Space Station

United Launch Alliance scrubs spy satellite launch 2nd time this week

CARBON WORLDS
NASA's New Mars Rover Is Ready for Space Lasers

ExoMars moves on

Study: Mars has four bodies of water underneath surface

Could life exist deep underground on Mars

CARBON WORLDS
NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

Chinese spacecraft launched mystery object into space before returning to Earth

CARBON WORLDS
Swarm announces pricing for world's lowest-cost satellite communications network

NanoAvionics launches second satellite for Lacuna Space's growing IoT satellite constellation

Machine-learning nanosats to inform global trade

SpaceX postpones Starlink launch as thick clouds persist

CARBON WORLDS
Secretive Big Data firm Palantir makes low-key stocks debut

NASA looks to advance 3D Printing construction systems for the Moon and Mars

EPC Space announces family of space level qualified power transistors

3D-printed, transparent fibers can sense breath, sounds, cell movements

CARBON WORLDS
Search for New Worlds at Home with NASA's Planet Patrol Project

CHEOPS space telescope makes ultra-precise temperature and size measurements of an unusual giant planet

Let them eat rocks

Evolution of radio-resistance is more complicated than previously thought

CARBON WORLDS
SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.