. 24/7 Space News .
STELLAR CHEMISTRY
Exoplanet-hunter TESS telescope spots bright gamma-ray burst
by Staff Writers
Dallas TX (SPX) May 01, 2021

TESS full-frame image in the cadence just before the BAT trigger (left) and at the peak flux of the burst (center). The emergence of the afterglow is apparent in the center of the image, indicated by the white arrow. The right panel shows the same region of the sky, with a slightly different orientation, in the Digitized Sky Survey (DSS); a small inset of TESS image is provided in the bottom left corner to demonstrate the change in orientation.

NASA has a long tradition of unexpected discoveries, and the space program's TESS mission is no different. SMU astrophysicist and her team have discovered a particularly bright gamma-ray burst using a NASA telescope designed to find exoplanets - those occurring outside our solar system - particularly those that might be able to support life.

It's the first time a gamma-ray burst has been found this way.

Gamma-ray bursts are the brightest explosions in the universe, typically associated with the collapse of a massive star and the birth of a black hole. They can produce as much radioactive energy as the sun will release during its entire 10-billion-year existence.

Krista Lynne Smith, an assistant professor of physics at Southern Methodist University, and her team confirmed the blast - called GRB 191016A - happened on Oct. 16 and also determined its location and duration. A study on the discovery has been published in The Astrophysical Journal.

"Our findings prove this TESS telescope is useful not just for finding new planets, but also for high-energy astrophysics," said Smith, who specializes in using satellites like TESS (Transiting Exoplanet Survey Satellite) to study supermassive black holes and gas that surrounds them. Such studies shed light on the behavior of matter in the deeply warped spacetime around black holes and the processes by which black holes emit powerful jets into their host galaxies.

Smith calculated that GRB 191016A had a peak magnitude of 15.1, which means it was 10,000 times fainter than the faintest stars we can see with the naked eyes.

That may sound quite dim, but the faintness has to do with how far away the burst occurred. It is estimated that light from GRB 191016A's galaxy had been travelling 11.7 billion years before becoming visible in the TESS telescope.

Most gamma ray bursts are dimmer - closer to 160,000 times fainter than the faintest stars.

The burst reached its peak brightness sometime between 1,000 and 2,600 seconds, then faded gradually until it fell below the ability of TESS to detect it some 7000 seconds after it first went off.

This gamma-ray burst was first detected by a NASA's satellite called Swift-BAT, which was built to find these bursts. But because GRB 191016A occurred too close to the moon, the Swift-BAT couldn't do the necessary follow-up it normally would have to learn more about it until hours later.

NASA's TESS happened to be looking at that same part of the sky. That was sheer luck, as TESS turns its attention to a new strip of the sky every month.

While exoplanet researchers at a ground-base for TESS could tell right away that a gamma-ray burst had happened, it would be months before they got any data from the TESS satellite on it. But since their focus was on new planets, these researchers asked if any other scientists at a TESS conference in Sydney, Australia were interested in doing more digging on the blast.

Smith was one of the few high-energy astrophysics specialists there at that time and quickly volunteered.

"The TESS satellite has a lot of potential for high-energy applications, and this was too good an example to pass up," she said. High-energy astrophysics studies the behavior of matter and energy in extreme environments, including the regions around black holes, powerful relativistic jets, and explosions like gamma-ray bursts.

TESS is an optical telescope that collects light curves on everything in its field of view, every half hour. Light curves are a graph of light intensity of a celestial object or region as a function of time. Smith analyzed three of these light curves to be able to determine how bright the burst was.

She also used data from ground-based observatories and the Swift gamma-ray satellite to determine the burst's distance and other qualities about it.

"Because the burst reached its peak brightness later and had a peak brightness that was higher than most bursts, it allowed the TESS telescope to make multiple observations before the burst faded below the telescope's detection limit," Smith said. "We've provided the only space-based optical follow-up on this exceptional burst."

Research paper


Related Links
Southern Methodist University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
True identity of mysterious gamma-ray source revealed
Manchester UK (SPX) Feb 04, 2021
An international research team including members from The University of Manchester has shown that a rapidly rotating neutron star is at the core of a celestial object now known as PSR J2039-5617 The international collaboration used novel data analysis methods and the enormous computing power of the citizen science project Einstein@Home to track down the neutron star's faint gamma-ray pulsations in data from NASA's Fermi Space Telescope. Their results show that the pulsar is in orbit with a s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Boeing's troubled Starliner capsule now aiming for July launch

Space aged: wine matured aboard ISS expected to sell for $1mn

Blue Origin will fly first crew to space in July

US Aerospace Company Blue Origin to Begin Selling Tickets for Tourist Trips in Space

STELLAR CHEMISTRY
Touchdown! SpaceX successfully lands Starship rocket

SpaceX to launch lunar mission paid with cryptocurrency Dogecoin

Protests over SpaceX contract put timetable for lunar return in limbo

NASA announces launch plans for new Dream Chaser spaceplane

STELLAR CHEMISTRY
NASA's Ingenuity Helicopter to begin new demonstration phase

Perseverance rover captures sound of Ingenuity flying on Mars

Volcanoes on Mars could be active, raise possibility of recent habitable conditions

Why Ingenuity's fifth flight will be different

STELLAR CHEMISTRY
China wants to send spacecraft to edge of solar system to mark 100th year of PRC

China's space station takes shared future concept to space

China launches space station core module Tianhe

Core capsule launched into orbit

STELLAR CHEMISTRY
Egos clash in Bezos and Musk space race

SpaceX launches 60 Starlink satellites from Florida

Spacecraft magnetic valve used to fill drinks

Lithuania to become ESA Associate Member state

STELLAR CHEMISTRY
Large Chinese rocket segment disintegrates over Indian Ocean

3D printing could be used in search for black holes

US watching Chinese rocket's erratic re-entry: Pentagon

ESA to build second deep space dish in Australia

STELLAR CHEMISTRY
UBCO researcher uses geology to help astronomers find habitable planets

Hubble Watches How a Giant Planet Grows

Coldplay beam new song into space in chat with French astronaut

Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

STELLAR CHEMISTRY
Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.