. 24/7 Space News .
STELLAR CHEMISTRY
True identity of mysterious gamma-ray source revealed
by Staff Writers
Manchester UK (SPX) Feb 04, 2021

Artist's impression of PSR J2039-5617 and its companion. The binary system consists of a rapidly rotating neutron star

An international research team including members from The University of Manchester has shown that a rapidly rotating neutron star is at the core of a celestial object now known as PSR J2039-5617

The international collaboration used novel data analysis methods and the enormous computing power of the citizen science project Einstein@Home to track down the neutron star's faint gamma-ray pulsations in data from NASA's Fermi Space Telescope.

Their results show that the pulsar is in orbit with a stellar companion about a sixth of the mass of our Sun. The pulsar is slowly but surely evaporating this star. The team also found that the companion's orbit varies slightly and unpredictably over time. Using their search method, they expect to find more such systems with Einstein@Home in the future.

Searching for the so-called 'Spider' pulsar systems - rapidly spinning neutron stars whose high-energy outflows are destroying their binary companion star, required 10 years of precise data. The pulsars have been given arachnid names of 'Black widows' or 'Redbacks', after species of spider where the females have been seen to kill the smaller males after mating.

New research published in, Monthly Notices of the Royal Astronomical Society, details how researchers found a neutron star rotating 377 times a second in an exotic binary system using data from NASA's Fermi Space Telescope.

The astronomer's findings were uniquely boosted by the Einstein@Home project, a network of thousands of civilian volunteers lending their home computing power to the efforts of the Fermi Telescope's work.

The group's search required combing very finely through the data in order not to miss any possible signals. The computing power required is enormous. The search would have taken 500 years to complete on a single computer core. By using a part of the Einstein@Home resources it was done in 2 months.

With the computing power donated by the Einstein@Home volunteers, the team discovered gamma-ray pulsations from the rapidly rotating neutron star. This gamma-ray pulsar, now known as J2039-5617, rotates about 377 times each second.

"It had been suspected for years that there is a pulsar, a rapidly rotating neutron star, at the heart of the source we now know as PSR J2039-5617," says Lars Nieder, a PhD student at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute; AEI) in Hannover. "But it was only possible to lift the veil and discover the gamma-ray pulsations with the computing power donated by tens of thousands of volunteers to Einstein@Home," he adds.

The celestial object has been known since 2014 as a source of X-rays, gamma rays, and light. All evidence obtained so far pointed at a rapidly rotating neutron star in orbit with a light-weight star being at the heart of the source. But clear proof was missing.

The first step to solving this riddle were new observations of the stellar companion with optical telescopes. They provided precise knowledge about the binary system without which a gamma-ray pulsar search (even with Einstein@Home's huge computing power) would be unfeasible.

The system's brightness varies during an orbital period depending on which side of the neutron star's companion is facing the Earth. "For J2039-5617, there are two main processes at work," explains Dr. Colin Clark from Jodrell Bank Centre for Astrophysics, lead author of the study.

"The pulsar heats up one side of the light-weight companion, which appears brighter and more bluish. Additionally, the companion is distorted by the pulsar's gravitational pull causing the apparent size of the star to vary over the orbit. These observations allowed the team to get the most precise measurement possible of the binary star's 5.5-hour orbital period, as well as other properties of the system."

With this information and the precise sky position from Gaia data, the team used the aggregated computing power of the distributed volunteer computing project Einstein@Home for a new search of about 10 years of archival observations of NASA's Fermi Gamma-ray Space Telescope.

Improving on earlier methods they had developed for this purpose, they enlisted the help of tens of thousands of volunteers to search Fermi data for periodic pulsations in the gamma-ray photons registered by the Large Area Telescope onboard the space telescope. The volunteers donated idle compute cycles on their computers' CPUs and GPUs to Einstein@Home.

The new knowledge of the frequency of the gamma-ray pulsations also allowed collaborators to detect radio pulsations in archival data from the Parkes radio telescope. Their results, also published in Monthly Notices of the Royal Astronomical Society, show that the pulsar's radio emission is often eclipsed by material that has been blown off the companion star by its nearby Redback pulsar.

Research paper


Related Links
University Of Manchester
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
"Game changer" perovskite can detect gamma rays
Lausanne, Switzerland (SPX) Dec 14, 2020
Perovskites are materials made up of organic compounds bound to a metal. Propelled into the forefront of materials' research because of their structure and properties, perovskites are earmarked for a wide range of applications, including in solar cells, LED lights, lasers, and photodetectors. That last application, photo - or light - detection, is of particular interest to scientists at EPFL's School of Basic Sciences who have developed a perovskite that can detect gamma rays. Led by the labs of P ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Artificial intelligence behind 21st Century spaceflight

NASA completes spacewalk to finish power system upgrades

NASA will pay $500,000 for good ideas on food production in space

Out-of-this-world wine back in Bordeaux after space station trip

STELLAR CHEMISTRY
Virgin Galactic flight test program update

Milestone for Europe's new launcher

Iran launches new satellite-carrying rocket

Rocket Lab demonstrates new orbital maneuvering capability

STELLAR CHEMISTRY
Could the surface of Phobos reveal secrets of the Martian past

NASA's Perseverance Rover 22 days from Mars landing

MAVEN continues to advance Mars science and telecommunications relay efforts

Purdue scientist ready for Mars rover touchdown

STELLAR CHEMISTRY
Three generations dedicated to space program

China's space station core module, cargo craft pass factory review

China's space tracking ship completes satellite launch monitoring

Key modules for China's next space station ready for launch

STELLAR CHEMISTRY
Hawkeye 360 deploys next-generation radio frequency sensing satellites

New rocket company Astra plans Nasdaq listing

Swedish Space Corporation opens Thailand branch

MDA appoints new VP of Satellite Systems

STELLAR CHEMISTRY
NASA's Imaging X-Ray Polarimetry Explorer prepares for environmental testing

Test paves way for new planetary radar

MDA extends satellite operations capability through contract award by the Canadian Space Agency

Earth will soon forever lose its 'second moon', astronomers say

STELLAR CHEMISTRY
First six-star system where all six stars undergo eclipses

TESS discovers four exoplanets orbiting a nearby sun-like star

Peering inside the birthplaces of planets orbiting the smallest stars

Could game theory help discover intelligent alien life

STELLAR CHEMISTRY
Peering at the Surface of a Nearby Moon

A Hot Spot on Jupiter

The 15th Anniversary of New Horizons Leaving Earth

Juno mission expands into the future









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.