. 24/7 Space News .
EARLY EARTH
Europium points to new suspect in continental mystery
by Staff Writers
Houston TX (SPX) May 17, 2018

This is a garnet pyroxenite xenolith from Sierra Nevada, California.

Clues from some unusual Arizona rocks pointed Rice University scientists toward a discovery - a subtle chemical signature in rocks the world over - that could answer a long-standing mystery: What stole the iron from Earth's continents?

The find has weighty implications. If the iron content of continental rocks was a bit greater, as it is in the rocks beneath Earth's oceans, for example, our atmosphere might look more like that of Mars, a planet so littered with rusty, oxidized rocks that it appears red even from Earth.

In a new paper available online in Science Advances, Rice petrologists Cin-Ty Lee, Ming Tang, Monica Erdman and Graham Eldridge make a case that garnet steals the most iron from continents. The hypothesis flies in the face of 40-plus years of geophysical thinking, and Tang, a postdoctoral fellow, and Lee, professor and chair of the Department of Earth, Environmental and Planetary Sciences at Rice, said they expect a healthy dose of skepticism from peers.

"The standard view, which even we agreed with and wrote papers agreeing with, is that iron is removed from continental crust by another mineral called magnetite," Lee said.

"I think people haven't thought much about garnet, possibly because it doesn't show up very much and magnetite shows up in a lot of samples."

Building a case for or against either mineral isn't easy because the iron they're accused of stealing disappears many miles below active volcanoes. The prime example today is the arc of volcanoes that span the Andes Mountains in South America.

Similar continental arcs are believed to have formed much of Earth's major landmasses, but scientists have no instruments capable of directly observing what happens beneath continental volcanic arcs. Instead, the missing iron mystery must be solved with deductive reasoning about Earth's inner workings and rare rocks that hold clues from the scene of the crime.

"The accepted wisdom is that magnetite pulls iron from the melt before the melt rises and gets erupted out at continental arcs," Tang said.

"Iron depletion is most pronounced at continental arcs, where the crust is thick, and much less so in island arcs, where the crust is thin. However, there is no obvious explanation for why the extent of magnetite involvement would correlate with thickness of the crust."

But garnet does correlate. Almandine, an iron-laden type of garnet, is more easily made under high pressure and high temperature - the kind of conditions that exist in the subduction zone beneath the Andes, where continental crust can be as much as 50 miles thick, Lee said.

Tang might never have suspected garnet were it not for a field trip by Lee and students to central Arizona in 2009 to look for xenoliths.

"'Xeno' meaning foreign and 'lith' meaning rock," Lee said.

"They are much older than the volcanoes they came from. These volcanoes ripped up the rocks from 60 to 80 kilometers deep, and the xenoliths came up as little fragments. It's difficult to find rocks like this, but when you do, they give you a window, a direct window, into the deep parts of the continental arc, the root."

Erdman, then a doctoral student in Lee's lab, conducted an initial analysis of the xenoliths, and established that they were formed in a continental arc setting and were rich in garnet. Two years later, Rice undergraduate Graham Eldridge spent a summer characterizing rare earth elements in the xenoliths and found hints that they contained unusual Europium ratios.

Europium typically forms minerals that allow each of its atoms to share three electrons with nearby atoms, an "oxidation state" that chemists notate as Eu+3. Europium also forms minerals in which it shares two electrons, and the notation for this less-oxidized state is Eu+2. In an oxygen-plentiful environment, Europium occurs in its highest oxidation state (Eu+3), but at more intermediate levels of oxygen in the mantle it can occur in both Eu+2 and Eu+3 states.

The oxidation states of the Europium that Eldridge found in the Arizona xenoliths suggested they formed in less-oxidized conditions than would be expected in the magnetite scenario, but there was not enough data to confirm this hunch.

"Continental arcs happen at subduction zones, where an oceanic tectonic plate slides below a continental plate," Lee said.

"When the oceanic plate is recycled back into the mantle, it is widely thought to introduce a lot of oxygen into the mantle. The magnetite scenario for iron depletion relies heavily on the idea that these subduction zones are highly oxidized at depth."

Tang joined Lee's group in 2016 and was intrigued by the Europium ratios in the xenoliths. Tang had extensive experience characterizing Europium as part of his doctoral studies at the University of Maryland, and he began conducting hundreds of painstaking measurements to more precisely characterize the Europium ratios in the Arizona xenoliths.

The quality of Tang's data not only confirmed the low-oxidation Europium ratios but allowed him to develop a new hypothesis that tied everything together: the garnet, the Europium ratios and the fact that thicker continental crusts are more iron-depleted than thinner island arc crusts.

"As the crustal column gets thicker and thicker, as it is at continental arcs, the temperature and pressure are great enough to produce these iron-rich garnets, which are heavy and sink out," Tang said.

"The iron they pull out is ferrous iron (Fe+2) and not highly oxidized. It goes back into the mantle, and the iron that remains in the melt and erupts to become part of the continental crust becomes even more oxidized on its way to the surface."

To test the hypothesis on a global scale, Tang spent several months examining records in the Max Planck Institute's GEOROC database, a comprehensive global collection of published analyses of volcanic rocks and mantle xenoliths collected all over the world.

"There is a relationship between iron depletion and the garnet fractionation signatures, which means magmas that fractionate more garnet are more depleted in iron," Tang said.

"This is born out in the global record, but the evidence is something that wouldn't be obvious from looking at just one or two cases. It's the kind of thing that requires a global database, and those have only recently become available."

Lee said the find has important implications for Earth's ability to sustain an oxygen-rich atmosphere.

"Photosynthesis produces oxygen, but the primary thing that takes oxygen out of circulation for a long time is oxidation with the crust," Lee said.

"If what comes out of volcanoes to form the continents is effectively already rusted, then it won't immediately react with and deplete the oxygen in the atmosphere."

After submitting their results for peer-reviewed publication, Tang and Lee found that renowned Australian petrologist Ted Ringwood and colleagues had implicated garnet rather than magnetite in a few papers published 50 years ago.

"Many of the people in our field have a scientific lineage that goes back to Ringwood," Lee said.

"I'm sure many of them may take one look and think this is a crazy idea, but considering that their great-great-grandfather, academically speaking, had speculated on this, perhaps we're in good company."


Related Links
Rice University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Jurassic fossil tail tells of missing link in crocodile family tree
Edinburgh UK (SPX) May 14, 2018
A 180 million-year-old fossil has shed light on how some ancient crocodiles evolved into dolphin-like animals. The specimen - featuring a large portion of backbone - represents a missing link in the family tree of crocodiles, and was one of the largest coastal predators of the Jurassic Period, researchers say. The newly discovered species was nearly five metres long and had large, pointed teeth for grasping prey. It also shared key body features seen in two distinct families of prehistoric c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
For how long will the USA remain the Nobel Prize leader?

Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Tourism nearly a tenth of global CO2 emissions

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

EARLY EARTH
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX launches most powerful Falcon 9 yet

China to launch first rocket developed by private company

Testing maintenance-free engines that power science in deep space

EARLY EARTH
Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission

Mars growth stunted by early giant planetary instability

InSight probe to survey Mars for secrets inside the planet

One scientist's 30-year quest to get under Mars' skin

EARLY EARTH
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

EARLY EARTH
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

China's communication satellites occupy niche in world market

UK may set up satellite program separate from EU

EARLY EARTH
Microscale IR spectroscopy enabled by phase change materials and metasurfaces

Step aside Superman, steel is no competition for this new material

Telephonics contracted for Coast Guard radar systems

Lasers in Space: Earth Mission Tests New Technology

EARLY EARTH
Atmospheric seasons could signal alien life

ANU study sheds new light on how our solar system formed

Dutch astronomers photograph possible toddler planet by chance

An Exoplanet Atmosphere Free of Clouds

EARLY EARTH
New views of Jupiter" showcases swirling clouds on giant planet

Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.