. 24/7 Space News .
TECH SPACE
Engineers fabricate a chip-free, wireless electronic "skin"
by Jennifer Chu for MIT News
Boston MA (SPX) Aug 25, 2022

illustration only

Wearable sensors are ubiquitous thanks to wireless technology that enables a person's glucose concentrations, blood pressure, heart rate, and activity levels to be transmitted seamlessly from sensor to smartphone for further analysis.

Most wireless sensors today communicate via embedded Bluetooth chips that are themselves powered by small batteries. But these conventional chips and power sources will likely be too bulky for next-generation sensors, which are taking on smaller, thinner, more flexible forms.

Now MIT engineers have devised a new kind of wearable sensor that communicates wirelessly without requiring onboard chips or batteries. Their design, detailed in the journal Science, opens a path toward chip-free wireless sensors.

The team's sensor design is a form of electronic skin, or "e-skin" - a flexible, semiconducting film that conforms to the skin like electronic Scotch tape. The heart of the sensor is an ultrathin, high-quality film of gallium nitride, a material that is known for its piezoelectric properties, meaning that it can both produce an electrical signal in response to mechanical strain and mechanically vibrate in response to an electrical impulse.

The researchers found they could harness gallium nitride's two-way piezoelectric properties and use the material simultaneously for both sensing and wireless communication.

In their new study, the team produced pure, single-crystalline samples of gallium nitride, which they paired with a conducting layer of gold to boost any incoming or outgoing electrical signal. They showed that the device was sensitive enough to vibrate in response to a person's heartbeat, as well as the salt in their sweat, and that the material's vibrations generated an electrical signal that could be read by a nearby receiver. In this way, the device was able to wirelessly transmit sensing information, without the need for a chip or battery.

"Chips require a lot of power, but our device could make a system very light without having any chips that are power-hungry," says the study's corresponding author, Jeehwan Kim, an associate professor of mechanical engineering and of materials science and engineering, and a principal investigator in the Research Laboratory of Electronics. "You could put it on your body like a bandage, and paired with a wireless reader on your cellphone, you could wirelessly monitor your pulse, sweat, and other biological signals."

Kim's co-authors include first author and former MIT postdoc Yeongin Kim, who is now an assistant professor at the University of Cincinnati; co-corresponding author Jiyeon Han of the Korean cosmetics company AMOREPACIFIC, which helped motivate the current work; members of the Kim Research Group at MIT; and other collaborators at the University of Virginia, Washington University in St. Louis, and multiple institutions across South Korea.

Pure resonance
Jeehwan Kim's group previously developed a technique, called remote epitaxy, that they have employed to quickly grow and peel away ultrathin, high-quality semiconductors from wafers coated with graphene. Using this technique, they have fabricated and explored various flexible, multifunctional electronic films.

In their new study, the engineers used the same technique to peel away ultrathin single-crystalline films of gallium nitride, which in its pure, defect-free form is a highly sensitive piezoelectric material.

The team looked to use a pure film of gallium nitride as both a sensor and a wireless communicator of surface acoustic waves, which are essentially vibrations across the films. The patterns of these waves can indicate a person's heart rate, or even more subtly, the presence of certain compounds on the skin, such as salt in sweat.

The researchers hypothesized that a gallium nitride-based sensor, adhered to the skin, would have its own inherent, "resonant" vibration or frequency that the piezoelectric material would simultaneously convert into an electrical signal, the frequency of which a wireless receiver could register. Any change to the skin's conditions, such as from an accelerated heart rate, would affect the sensor's mechanical vibrations, and the electrical signal that it automatically transmits to the recever.

"If there is any change in the pulse, or chemicals in sweat, or even ultraviolet exposure to skin, all of this activity can change the pattern of surface acoustic waves on the gallium nitride film," notes Yeongin Kim. "And the sensitivity of our film is so high that it can detect these changes."

Wave transmission
To test their idea, the researchers produced a thin film of pure, high-quality gallium nitride and paired it with a layer of gold to boost the electrical signal. They deposited the gold in the pattern of repeating dumbbells - a lattice-like configuration that imparted some flexibility to the normally rigid metal. The gallium nitride and gold, which they consider to be a sample of electronic skin, measures just 250 nanometers thick - about 100 times thinner than the width of a human hair.

They placed the new e-skin on volunteers' wrists and necks, and used a simple antenna, held nearby, to wirelessly register the device's frequency without physically contacting the sensor itself. The device was able to sense and wirelessly transmit changes in the surface acoustic waves of the gallium nitride on volunteers' skin related to their heart rate.

The team also paired the device with a thin ion-sensing membrane - a material that selectively attracts a target ion, and in this case, sodium. With this enhancement, the device could sense and wireless transmit changing sodium levels as a volunteer held onto a heat pad and began to sweat.

The researchers see their results as a first step toward chip-free wireless sensors, and they envision that the current device could be paired with other selective membranes to monitor other vital biomarkers.

"We showed sodium sensing, but if you change the sensing membrane, you could detect any target biomarker, such as glucose, or cortisol related to stress levels," says co-author and MIT postdoc Jun Min Suh. "It's quite a versatile platform."

This research was supported by AMOREPACIFIC.


Related Links
MIT Research Laboratory of Electronics
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
North American Helium brings third helium facility into production
Calgary, Canada (SPX) Aug 25, 2022
North American Helium Inc. has brought its third helium purification facility on production in May with zero operational issues. This facility is located near the Village of Mankota in southwest Saskatchewan. Commenting on this operational milestone, Mr. Marlon McDougall, President and COO stated, "As NAH continues to execute on its operating and development plans, we are now realizing our goal of creating a new global helium production hub in Saskatchewan. "We have been diligent in our appr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Voyager logs 45 years in space as NASA's longest mission to date

45 years after launch, NASA's Voyager probes still blazing trails billions of miles away

Track NASA's Artemis I mission in real time

Russian spacewalk cut short due to issue with suit

TECH SPACE
Glenn's legacy of testing spacecraft spans from Apollo to Artemis

NASA calls off Monday launch of Moon rocket

Northrop Grumman's boosters ready to launch Artemis to Luna

NASA in good position for Monday launch of Artemis I

TECH SPACE
New water map of Mars will prove invaluable for future exploration

Perseverance Soon Heads to 'Enchanted Lake'

How Martian ionospheric dispersion effected on SAR imaging

Harvesting resources on Mars with plasmas

TECH SPACE
103rd successful rocket launch breaks record

Chinese space-tracking ship docks at Sri Lanka's Hambantota port

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

Harvest from heavenly breeding

TECH SPACE
Introducing Huginn

NASA scientists study how to remove planetary photobombers

Thailand's first comsat by mu Space Corp passes GISTDA tests

On the front lines of space innovation

TECH SPACE
Virtual reality revives Iraq's war-ravaged heritage

PPE can be recycled to make stronger concrete

By design: from waste to next-gen carbon fiber

Researchers design new inks for 3D-printable wearable bioelectronics

TECH SPACE
New study examines how many moons an earth-mass planet could host

Case solved: missing carbon monoxide was hiding in the ice

Breaking in a new planet

Scientists say exoplanet 100 light years from Earth may be covered with deep ocean

TECH SPACE
Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.