. 24/7 Space News .
STELLAR CHEMISTRY
Engineers Solve Excessive Heat Removal from NASA's Webb Telescope
by Eric Villard for GSFC News
Greenbelt MD (SPX) Jun 07, 2018

illustration only

How will NASA's James Webb Space Telescope shed the heat generated by its science instruments and their supporting electronics? To anyone who is not an engineer or scientist, the answer might be complex and "baffling," and it turns out the process is exactly that.

Webb's four science instruments are held within a support structure called the integrated science instrument module (ISIM), located behind the telescope's primary mirror. The ISIM and Webb's optics form the science payload of the observatory. To keep heat away from the sensitive instruments, a majority of the electronics used to power and operate the instruments are housed in a compartment below ISIM, where specially designed baffles direct the heat safely into space and away from any cold surfaces of the observatory.

The baffles essentially act as mirrors to reflect the heat (infrared radiation) outward in a specific direction. If that sounds familiar, it is because Webb's mirrors will do very much the same thing - but instead of reflecting the infrared light into space, they will guide it with pinpoint accuracy to the telescope's science instruments.

"Gold has a very high reflectivity in the infrared spectrum range, so it is ideal for directing heat," explained Matthew Stephens, a mechanical systems engineer for Webb at NASA's Goddard Space Flight Center in Greenbelt, Md. "This is the same reason all of the primary, secondary, and tertiary mirrors are gold-coated."

The engineers in this photo are reinstalling the baffles, which had been previously removed and safely stored in a clean environment to protect them from any contamination during integration and testing of the science payload. The clear plastic sheets placed over the baffles will protect them from any contamination during the remaining integration and testing phases for the observatory.

The engineers had to reinstall the baffles before Webb's science payload and its spacecraft element (the combined spacecraft bus and sunshield) are integrated at Northrop Grumman Aerospace Systems in Redondo Beach, California, where both halves of the observatory currently reside. If the engineers wait until after integration, Webb's tennis-court-sized sunshield will obstruct the ISIM electronics compartment and make reinstalling the baffles much more difficult.

NASA's James Webb Space Telescope will be the world's next great space science observatory. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, the European Space Agency (ESA) and the Canadian Space Agency (CSA).


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Greenland Telescope opens new era of Arctic astronomy
Boston MA (SPX) Jun 01, 2018
To study the most extreme objects in the Universe, astronomers sometimes have to go to some extreme places themselves. Over the past several months, a team of scientists has braved frigid temperatures to set up and observe with a new radio telescope in Greenland. Taking advantage of excellent atmospheric conditions, the Greenland Telescope is designed to detect radio waves from stars, star-forming regions, galaxies and the vicinity of black holes. One of its primary goals is to take the first imag ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Trio reach Earth from ISS with football slated for World Cup

NASA selects US companies to advance space resource collection

New crew blasts off for ISS

ESA astronaut Luca Parmitano to be Space Station commander on his next flight

STELLAR CHEMISTRY
Commercial satellite launch service market to grow strongly through 2024

Arianespace and ISIS to launch small satellites on the Vega SSMS POC flight

Watch live: SpaceX to launch SES-12 communications satellite

Gilmour Space prepares for suborbital hybrid rocket launch

STELLAR CHEMISTRY
Mars Curiosity's Labs Are Back in Action

From horizon to horizon: Celebrating 15 years of Mars Express

Red Planet rover set for extreme environment workout

Opportunity Mars rover ready to study rock targets up close

STELLAR CHEMISTRY
Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

China's Queqiao satellite carries "large umbrella" into deep space

STELLAR CHEMISTRY
Airbus-built SES-12 dual-mission satellite successfully launched

Gogo and Iridium Partner to Deliver Best-in-Class Aircraft Connectivity

NASA Selects Small Business Technology Awards

From ships to satellites: Scotland aims for the sky

STELLAR CHEMISTRY
Supercomputer Astronomy: The Next Generation

Space Traffic Management - Oversight, Licensing And Enforcement

Firing up a new alloy

Zn-InsP6 complex can enhance excretion of radioactive strontium from the body

STELLAR CHEMISTRY
Searching for Potential Life-Hosting Planets Beyond Earth

Planets Can Easily Exist in Triple Star Systems

Sorry ET, Got Here First: Russian Scientist Suggests Humans Would Destroy Aliens

How microbes survive clean rooms and contaminate spacecraft

STELLAR CHEMISTRY
Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes

'Surprising' methane dunes found on Pluto

Pluto may be giant comet made up of comets, study says









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.