![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Tokyo, Japan (SPX) Dec 28, 2018
Scientists at Tokyo Institute of Technology proposed new quasi-1D materials for potential spintronic applications, an upcoming technology that exploits the spin of electrons. They performed simulations to demonstrate the spin properties of these materials and explained the mechanisms behind their behavior. Conventional electronics is based on the movement of electrons and mainly concerns their electric charge; unfortunately, we are close to reaching the physical limits for improving electronic devices. However, electrons bear another intrinsic quantum-physical property called "spin", which can be interpreted as a type of angular momentum and can be either "up" or "down". While conventional electronic devices do not deploy the spin of the electrons that they employ, spintronics is a field of study in which the spin of the conducting electrons is crucial. Serious improvements in performance and new applications can be attained through "spin currents". As promising as spintronics sound, researchers are still trying to find convenient ways of generating spin currents with material structures that possess electrons with desirable spin properties. The Rashba-Bychkov effect (or simply Rashba effect), which involves a splitting of spin-up and spin-down electrons due to breakings in symmetry, could potentially be exploited for this purpose. A pair of researchers from Tokyo Institute of Technology, including Associate Professor Yoshihiro Gohda, have proposed a new mechanism to generate a spin current without energy loss from a series of simulations for new quasi-1D materials based on bismuth-adsorbed indium that exhibit a giant Rashba effect. "Our mechanism is suitable for spintronic applications, having an advantage that it does not require an external magnetic field to generate nondissipative spin current," explains Gohda. This advantage would simplify potential spintronic devices and would allow for further miniaturization. The researchers conducted simulations based on these materials to demonstrate that the Rashba effect in them can be large and only requires applying a certain voltage to generate spin currents. By comparing the Rashba properties of multiple variations of these materials, they provided explanations for the observed differences in the materials' spin properties and a guide for further materials exploration. This type of research is very important as radically new technologies are required if we intend to further improve electronic devices and go beyond their current physical limits. "Our study should be important for energy-efficient spintronic applications and stimulating further exploration of different 1D Rashba systems," concludes Gohda. From faster memories to quantum computers, the benefits of better understanding and exploiting Rashba systems will certainly have enormous implications.
![]() ![]() Studying how unconventional metals behave, with an eye on high-temperature superconductors Princeton NJ (SPX) Dec 17, 2018 Using laser light to trap atoms in a checkerboard-like pattern, a team led by Princeton scientists studied how resistance - the loss of electrical current as heat - can develop in unconventional metals. The results may help explain how certain types of superconductors made from copper oxides are able to conduct electricity so efficiently. The research was published online Dec. 6 in the journal Science. Superconducting materials are ones that efficiently transmit electricity without losing an ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |