. 24/7 Space News .
STELLAR CHEMISTRY
Earth isn't 'super' because the Sun had rings before planets
by Jade Boyd for Rice News
Houston TX (SPX) Jan 06, 2022

The addition of false color to an image captured by the Atacama Large Millimeter/submillimeter Array, or ALMA, reveals a series of rings around a young star named HD163296. (Image courtesy of Andrea Isella/Rice University)

Before the solar system had planets, the sun had rings - bands of dust and gas similar to Saturn's rings - that likely played a role in Earth's formation, according to a new study. "In the solar system, something happened to prevent the Earth from growing to become a much larger type of terrestrial planet called a super-Earth ," said Rice University astrophysicist Andre Izidoro, referring to the massive rocky planets seen around at least 30% of sun-like stars in our galaxy.

Izidoro and colleagues used a supercomputer to simulate the solar system's formation hundreds of times. Their model, which is described in a study published online in Nature Astronomy, produced rings like those seen around many distant, young stars. It also faithfully reproduced several features of the solar system missed by many previous models, including:

+ An asteroid belt between Mars and Jupiter containing objects from both the inner and outer solar system.

+ The locations and stable, almost circular orbits of Earth, Mars, Venus and Mercury.

+ The masses of the inner planets, including Mars, which many solar system models overestimate.

+ The dichotomy between the chemical makeup of objects in the inner and outer solar system.

+ A Kuiper belt region of comets, asteroids and small bodies beyond the orbit of Neptune.

The study by astronomers, astrophysicists and planetary scientists from Rice, the University of Bordeaux, Southwest Research Institute in Boulder, Colorado, and the Max Planck Institute for Astronomy in Heidelberg, Germany, draws on the latest astronomical research on infant star systems.

Their model assumes three bands of high pressure arose within the young sun's disk of gas and dust. Such "pressure bumps" have been observed in ringed stellar disks around distant stars, and the study explains how pressure bumps and rings could account for the solar system's architecture, said lead author Izidoro, a Rice postdoctoral researchers who received his Ph.D. training at Sao Paulo State University in Brazil.

"If super-Earths are super-common, why don't we have one in the solar system?" Izidoro said. "We propose that pressure bumps produced disconnected reservoirs of disk material in the inner and outer solar system and regulated how much material was available to grow planets in the inner solar system."

Pressure bumps
For decades, scientists believed gas and dust in protoplanetary disks gradually became less dense, dropping smoothly as a function of distance from the star. But computer simulations show planets are unlikely to form in smooth-disk scenarios.

"In a smooth disk, all solid particles - dust grains or boulders - should be drawn inward very quickly and lost in the star," said astronomer and study co-author Andrea Isella , an associate professor of physics and astronomy at Rice. "One needs something to stop them in order to give them time to grow into planets."

When particles move faster than the gas around them, they "feel a headwind and drift very quickly toward the star," Izidoro explained. At pressure bumps, gas pressure increases, gas molecules move faster and solid particles stop feeling the headwind. "That's what allows dust particles to accumulate at pressure bumps," he said.

Isella said astronomers have observed pressure bumps and protoplanetary disk rings with the Atacama Large Millimeter/submillimeter Array, or ALMA, an enormous 66-dish radio telescope that came online in Chile in 2013.

"ALMA is capable of taking very sharp images of young planetary systems that are still forming, and we have discovered that a lot of the protoplanetary disks in these systems are characterized by rings," Isella said. "The effect of the pressure bump is that it collects dust particles, and that's why we see rings. These rings are regions where you have more dust particles than in the gaps between rings."

Ring formation
The model by Izidoro and colleagues assumed pressure bumps formed in the early solar system at three places where sunward-falling particles would have released large amounts of vaporized gas.

"It's just a function of distance from the star, because temperature is going up as you get closer to the star," said geochemist and study co-author Rajdeep Dasgupta , the Maurice Ewing Professor of Earth Systems Science at Rice. "The point where the temperature is high enough for ice to be vaporized, for example, is a sublimation line we call the snow line ."

In the Rice simulations, pressure bumps at the sublimation lines of silicate, water and carbon monoxide produced three distinct rings. At the silicate line, the basic ingredient of sand and glass, silicon dioxide, became vapor. This produced the sun's nearest ring, where Mercury, Venus, Earth and Mars would later form. The middle ring appeared at the snow line and the farthest ring at the carbon monoxide line.

Rings birth planetesimals and planets
Protoplanetary disks cool with age, so sublimation lines would have migrated toward the sun. The study showed this process could allow dust to accumulate into asteroid-sized objects called planetesimals, which could then come together to form planets. Izidoro said previous studies assumed planetesimals could form if dust were sufficiently concentrated, but no model offered a convincing theoretical explanation of how dust might accumulate.

"Our model shows pressure bumps can concentrate dust, and moving pressure bumps can act as planetesimal factories," Izidoro said. "We simulate planet formation starting with grains of dust and covering many different stages, from small millimeter-sized grains to planetesimals and then planets."

Accounting for cosmochemical signatures, Mars' mass and the asteroid belt
Many previous solar system simulations produced versions of Mars as much as 10 times more massive than Earth. The model correctly predicts Mars having about 10% of Earth's mass because "Mars was born in a low-mass region of the disk," Izidoro said.

Dasgupta said the model also provides a compelling explanation for two of the solar system's cosmochemical mysteries: the marked difference between the chemical compositions of inner- and outer-solar system objects, and the presence of each of those objects in the asteroid belt between Mars and Jupiter.

Izidoro's simulations showed the middle ring could account for the chemical dichotomy by preventing outer-system material from entering the inner system. The simulations also produced the asteroid belt in its correct location, and showed it was fed objects from both the inner and outer regions.

"The most common type of meteorites we get from the asteroid belt are isotopically similar to Mars," Dasgupta said. "Andre explains why Mars and these ordinary meteorites should have a similar composition. He's provided a nuanced answer to this question."

Pressure-bump timing and super-Earths
Izidoro said the delayed appearance of the sun's middle ring in some simulations led to the formation of super-Earths, which points to the importance of pressure-bump timing.

"By the time the pressure bump formed in those cases, a lot of mass had already invaded the inner system and was available to make super-Earths," he said. "So the time when this middle pressure bump formed might be a key aspect of the solar system."

Research Report: "Planetesimal rings as the cause of the Solar System's planetary architecture"


Related Links
Rice University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
SwRI scientist helps simulate how our solar system formed from rings
San Antonio TX (SPX) Jan 06, 2022
A Southwest Research Institute scientist contributed to a new solar system formation model that explains the existing inner planetary distribution and the asteroid belt between the inner and outer solar system. SwRI's Dr. Rogerio Deienno, who specializes in celestial mechanics and dynamical astronomy, and his colleagues developed a model where three rings of planetesimals, the building blocks for planets, would form from the swirling disk of gas and dust around the Sun known as the solar nebula. " ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Japan space tourist eyes Mariana Trench trip after ISS

CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

Nibbling cats and Covid masks: First look at CES tech show

STELLAR CHEMISTRY
Rogozin says Baikonur security strengthened amid Kazakhstan protests

NASA releases autonomous flight termination unit software to industry

Astra Space faces critics, skeptics as it plans Florida launch

Bezos' Blue Origin teams up with U.S. military 'rocket cargo' program

STELLAR CHEMISTRY
Flight 19 - New Year, Same Ingenuity

Sols 3347-3348: Bem Vindo a Roraima!

China's Mars orbiter captures series of selfies using remote camera

Chinese Mars mission sends photos of the Red Planet

STELLAR CHEMISTRY
China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

China heads launch list of space rockets

STELLAR CHEMISTRY
Voyager Space Completes Acquisition of Space Micro

US Govt orders Polyakov to sell entire Firefly Aerospace stake

Satellogic to build high-throughput manufacturing plant in Netherlands

UK firm closer to offering global internet via satellites

STELLAR CHEMISTRY
Metaverse gets touch of reality at CES

Take-Two to buy 'Farmville' creator Zynga for $12.7 bn

Ammonia and paper: Sustainability ideas at CES tech show

ADDMAN deepens space industry and refractory metals expertise via Castheon acquisition

STELLAR CHEMISTRY
Eccentric exoplanet discovered

The mysterious dusty object orbiting TIC 400799224

Billions of starless planets haunt dark cloud cradles

Astronomers Detect Signature of Magnetic Field on an Exoplanet

STELLAR CHEMISTRY
Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons

NASA's Juno Spacecraft 'Hears' Jupiter's Moon

Deep Mantle Krypton Reveals Earth's Outer Solar System Ancestry









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.