. 24/7 Space News .
STELLAR CHEMISTRY
SwRI scientist helps simulate how our solar system formed from rings
by Staff Writers
San Antonio TX (SPX) Jan 06, 2022

A Southwest Research Institute scientist contributed to a new solar system formation model that explains the existing inner planetary distribution and the asteroid belt between the inner and outer solar system. The team based the model on the first image collected by the Atacama Large Millimeter/submillimeter Array (ALMA) observatory, which shows a disk around a young star as a nested structure of rings.

A Southwest Research Institute scientist contributed to a new solar system formation model that explains the existing inner planetary distribution and the asteroid belt between the inner and outer solar system. SwRI's Dr. Rogerio Deienno, who specializes in celestial mechanics and dynamical astronomy, and his colleagues developed a model where three rings of planetesimals, the building blocks for planets, would form from the swirling disk of gas and dust around the Sun known as the solar nebula.

"As dust particles move slightly faster than the gas around them, they feel a headwind and drift very quickly toward the star," said Deienno, who contributed to a Nature Astronomy paper discussing this research. "At 'pressure bumps' - regions in the disk usually associated with localized changes in disk composition and the size of dust grains - gas pressure increases, gas molecules move faster and solid particles stop feeling the headwind. That allows dust particles to accumulate at these pressure bumps forming rings separated by gaps."

The three pressure bumps in the Sun's natal disk are associated with three different sublimation fronts, corresponding to temperatures and distance from the star. Sublimation fronts are regions in the disk where materials of a given chemical composition would become vapor. They invoke pressure bumps at the sublimation fronts of silicate at temperatures higher than 1400 Kelvin, water at 170 Kelvin and carbon monoxide at 30 Kelvin.

Images collected by the Atacama Large Millimeter/submillimeter Array (ALMA) observatory showing a disk around a young star in unprecedented detail as a nested structure of rings provided a premise for a ring-based model. The model assumes millimeter- to centimeter-sized dust and pebbles accumulate at pressure bump locations and collapse due to their collective gravity into much larger, 100-kilometer-sized planetesimals, the building blocks for planets. According to this new model, planetesimals would form in three rings, each around a sublimation front: the inner silicate ring, the middle water ring and the outer carbon monoxide ring.

"As time goes by, the disk temperature cools," Deienno said. "This cooling process causes the pressure bumps to migrate toward the Sun, with the first planetesimals forming at the outer edge of each ring. Assuming the disk composition at atomic levels also changes with time, the planetesimal compositions should be slightly different across each ring."

That's where Deienno's simulations came in, connecting the forming rings of planetesimals associated with the silicate sublimation front, the inner ring, to the growing terrestrial planets.

"Andre Izidoro, the lead author from Rice University, generated the distributions of planetesimals formed in the rings," Deienno said. "Then I simulated the entire collisional growth process during the gas disk lifetime until the terrestrial protoplanets formed. This allowed us to track the compositional evolution and feeding zones of Earth, Venus and Mars as well as the compositional link between Mars and the main asteroid belt."

Using supercomputers, the researchers performed a variety of simulations that captured how our solar system may have formed right down to the slightly different chemical compositions and masses of Venus, Earth and Mars. The Earth and Venus analogs collect the most materials forming the bulk from regions closer to the Sun, whereas the Mars-like planet was built from materials in the more sparsely populated regions farther from the Sun.

Beyond the orbit of Mars, the simulations yielded a region sparsely populated or completely devoid of planetesimals. Some planetesimals from zones inside or directly beyond would later stray into the asteroid belt region, become trapped and collide, creating fragments today known as asteroids.

"The simulations are even able to explain the different asteroid populations," Deienno said. "Bodies that are made mostly of silica are remnants of stray objects originating in the region around Mars, whereas asteroids predominantly composed of carbon are likely remnants of stray objects from the region outside the asteroid belt."

The latter region, the middle ring around the water sublimation front, is the feeding zone for the accretion of the giant planets, whereas the outermost third ring around the carbon monoxide sublimation front would develop into what is commonly known as the primordial trans-Neptunian disk.

Research Report: "Planetesimal rings as the cause of the Solar System's planetary architecture"


Related Links
Southwest Research Institute
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Three rings to bind them in ancient cosmic history
Heidelberg, Germany (SPX) Jan 01, 2022
Astronomers have managed to link the properties of the inner planets of our solar system with our cosmic history: with the emergence of ring structures in the swirling disk of gas and dust in which these planets were formed. The rings are associated with basic physical properties such as the transition from an outer region where ice can form where water can only exist as water vapor. The astronomers made use of a spread of simulation to explore different possbilities of inner planet evolution. Our solar ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA's newest astronaut class begins training in Houston

Japan space tourist eyes Mariana Trench trip after ISS

CES show highlights: Robo-dogs, self-sailing boat, brain tech

CES tech fair opens under pandemic shadow

STELLAR CHEMISTRY
Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Arianespace consolidates leadership in commercial market with 15 Ariane, Soyuz and Vega launches in 2021

SpaceX successfully completes first launch of 2022 from Florida

Prestwick Spaceport Files Planning Application Notice

STELLAR CHEMISTRY
Assessing Perseverance's Seventh Sample Collection

Perseverance set to exit Seitah area

China's Mars orbiter captures series of selfies using remote camera

Sols 3347-3348: Bem Vindo a Roraima!

STELLAR CHEMISTRY
Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

China's astronauts mark New Year with livestream from space

STELLAR CHEMISTRY
Advertising plays key role in satellite TV success, study shows

Voyager Space Completes Acquisition of Space Micro

Space business: The final (profitable) frontier

Euroconsult predicts highest government space budgets in decades despite Covid

STELLAR CHEMISTRY
Debris from failed Russian rocket falls into sea near French Polynesia

Windows that outsmart the elements

Metaverse gets touch of reality at CES

Take-Two to buy 'Farmville' creator Zynga for $12.7 bn

STELLAR CHEMISTRY
Eccentric exoplanet discovered

Arianespace to launch PLATiNO 1 and 2 on Vega and Vega C

New year's mission to start new phase of exoplanet research

Elusive atmospheric molecule produced in a lab for the 1st time by UH

STELLAR CHEMISTRY
Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons

NASA's Juno Spacecraft 'Hears' Jupiter's Moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.