. 24/7 Space News .
CLIMATE SCIENCE
Earth can regulate its own temperature over millennia, new study finds
by Jennifer Chu for MIT News
Boston MA (SPX) Nov 17, 2022

A study by MIT researchers confirms that the planet harbors a "stabilizing feedback" mechanism that acts over hundreds of thousands of years to pull the climate back from the brink, keeping global temperatures within a steady, habitable range.

The Earth's climate has undergone some big changes, from global volcanism to planet-cooling ice ages and dramatic shifts in solar radiation. And yet life, for the last 3.7 billion years, has kept on beating.

Now, a study by MIT researchers in Science Advances confirms that the planet harbors a "stabilizing feedback" mechanism that acts over hundreds of thousands of years to pull the climate back from the brink, keeping global temperatures within a steady, habitable range.

Just how does it accomplish this? A likely mechanism is "silicate weathering" - a geological process by which the slow and steady weathering of silicate rocks involves chemical reactions that ultimately draw carbon dioxide out of the atmosphere and into ocean sediments, trapping the gas in rocks.

Scientists have long suspected that silicate weathering plays a major role in regulating the Earth's carbon cycle. The mechanism of silicate weathering could provide a geologically constant force in keeping carbon dioxide - and global temperatures - in check. But there's never been direct evidence for the continual operation of such a feedback, until now.

The new findings are based on a study of paleoclimate data that record changes in average global temperatures over the last 66 million years. The MIT team applied a mathematical analysis to see whether the data revealed any patterns characteristic of stabilizing phenomena that reined in global temperatures on a geologic timescale.

They found that indeed there appears to be a consistent pattern in which the Earth's temperature swings are dampened over timescales of hundreds of thousands of years. The duration of this effect is similar to the timescales over which silicate weathering is predicted to act.

The results are the first to use actual data to confirm the existence of a stabilizing feedback, the mechanism of which is likely silicate weathering. This stabilizing feedback would explain how the Earth has remained habitable through dramatic climate events in the geologic past.

"On the one hand, it's good because we know that today's global warming will eventually be canceled out through this stabilizing feedback," says Constantin Arnscheidt, a graduate student in MIT's Department of Earth, Atmospheric and Planetary Sciences (EAPS). "But on the other hand, it will take hundreds of thousands of years to happen, so not fast enough to solve our present-day issues."

The study is co-authored by Arnscheidt and Daniel Rothman, professor of geophysics at MIT.

Stability in data
Scientists have previously seen hints of a climate-stabilizing effect in the Earth's carbon cycle: Chemical analyses of ancient rocks have shown that the flux of carbon in and out of Earth's surface environment has remained relatively balanced, even through dramatic swings in global temperature. Furthermore, models of silicate weathering predict that the process should have some stabilizing effect on the global climate. And finally, the fact of the Earth's enduring habitability points to some inherent, geologic check on extreme temperature swings.

"You have a planet whose climate was subjected to so many dramatic external changes. Why did life survive all this time? One argument is that we need some sort of stabilizing mechanism to keep temperatures suitable for life," Arnscheidt says. "But it's never been demonstrated from data that such a mechanism has consistently controlled Earth's climate."

Arnscheidt and Rothman sought to confirm whether a stabilizing feedback has indeed been at work, by looking at data of global temperature fluctuations through geologic history. They worked with a range of global temperature records compiled by other scientists, from the chemical composition of ancient marine fossils and shells, as well as preserved Antarctic ice cores.

"This whole study is only possible because there have been great advances in improving the resolution of these deep-sea temperature records," Arnscheidt notes. "Now we have data going back 66 million years, with data points at most thousands of years apart."

Speeding to a stop
To the data, the team applied the mathematical theory of stochastic differential equations, which is commonly used to reveal patterns in widely fluctuating datasets.

"We realized this theory makes predictions for what you would expect Earth's temperature history to look like if there had been feedbacks acting on certain timescales," Arnscheidt explains.

Using this approach, the team analyzed the history of average global temperatures over the last 66 million years, considering the entire period over different timescales, such as tens of thousands of years versus hundreds of thousands, to see whether any patterns of stabilizing feedback emerged within each timescale.

"To some extent, it's like your car is speeding down the street, and when you put on the brakes, you slide for a long time before you stop," Rothman says. "There's a timescale over which frictional resistance, or a stabilizing feedback, kicks in, when the system returns to a steady state."

Without stabilizing feedbacks, fluctuations of global temperature should grow with timescale. But the team's analysis revealed a regime in which fluctuations did not grow, implying that a stabilizing mechanism reigned in the climate before fluctuations grew too extreme. The timescale for this stabilizing effect - hundreds of thousands of years - coincides with what scientists predict for silicate weathering.

Interestingly, Arnscheidt and Rothman found that on longer timescales, the data did not reveal any stabilizing feedbacks. That is, there doesn't appear to be any recurring pull-back of global temperatures on timescales longer than a million years. Over these longer timescales, then, what has kept global temperatures in check?

"There's an idea that chance may have played a major role in determining why, after more than 3 billion years, life still exists," Rothman offers.

In other words, as the Earth's temperatures fluctuate over longer stretches, these fluctuations may just happen to be small enough in the geologic sense, to be within a range that a stabilizing feedback, such as silicate weathering, could periodically keep the climate in check, and more to the point, within a habitable zone.

"There are two camps: Some say random chance is a good enough explanation, and others say there must be a stabilizing feedback," Arnscheidt says. "We're able to show, directly from data, that the answer is probably somewhere in between. In other words, there was some stabilization, but pure luck likely also played a role in keeping Earth continuously habitable."

This research was supported, in part, by a MathWorks fellowship and the National Science Foundation.

Research Report:"Presence or absence of stabilizing Earth system feedbacks on different timescales"


Related Links
MIT Department of Earth, Atmospheric and Planetary Sciences
Climate Science News - Modeling, Mitigation Adaptation


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CLIMATE SCIENCE
G20 breathes new life into UN climate talks
Sharm El Sheikh, Egypt (AFP) Nov 16, 2022
A pledge by G20 leaders, whose countries account for most global CO2 emissions, to pursue the most ambitious target against global warming breathed new life into fraught UN climate talks in Egypt on Wednesday. Analysts and campaigners welcomed the final communique from the G20 meeting in Bali, Indonesia, which comes as negotiators in Egypt are struggling to agree on key issues before COP27 is supposed to end on Friday. "The positive signals from the G20 summit should put wind in the sails of the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CLIMATE SCIENCE
Calnetix Technologies' high-speed blower system delivered to ISS

SmartSat CRC and NASA team up to collaborate on astronaut emergency communications

S.S. Sally Ride delivers experiments to International Space Station

NASA Moon rocket launch delayed again, this time by storm

CLIMATE SCIENCE
Liftoff! NASA launches mega Moon rocket, ushering new era of exploration

Phantom Space conducts successful stage hot fire test for new rocket

Improving the performance of electrodeless plasma thrusters for space propulsion

Artemis I rocket received only minimal damage from Hurricane Nicole, NASA says

CLIMATE SCIENCE
Space exploration goes underground

Try, Try Again: Sols 3655-3656

A rover for Mars' moon Phobos

Gediz Vallis Ridge Rising: Sols 3650-3652

CLIMATE SCIENCE
China launches spacecraft carrying cargo for space station

China's cargo spacecraft sets new world record

Next-generation rocket for astronauts expected in 2027

Astronauts enter China's Mengtian lab module for first time

CLIMATE SCIENCE
SFL contracted for 15 additional HawkEye 360 RF geolocation microsatellites

AE Industrial Partners completes investment in York Space Systems

Rocket Lab to supply satellite separation systems for Tranche 1 Transport Layer vendors

Maxar-built Galaxy 31 and Galaxy 32 for Intelsat performing properly after launch

CLIMATE SCIENCE
How does radiation travel through dense plasma

Next generation material that adapts to its history

Generality vs. specificity: unraveling the electric double layer structure of highly ionic liquid electrolytes

China's Tencent wins first game licence in 18 months

CLIMATE SCIENCE
Early planetary migration can explain missing planets

Oldest planetary debris in our galaxy found from new study

Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

CLIMATE SCIENCE
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.