. 24/7 Space News .
TECH SPACE
Generality vs. specificity: unraveling the electric double layer structure of highly ionic liquid electrolytes
by Staff Writers
Urbana IL (SPX) Nov 18, 2022

Electric double layers.

Using a combination of simulation and experimental techniques, University of Illinois Urbana-Champaign Material Science and Engineering researchers have been able to identify the electric double layer structure of an ionic liquid on a series of crystalline electrodes.

The research, published October 5th in Journal of Physical Chemistry Letters, combined molecular dynamics (MD) simulations and electrochemical 3D atomic force microscopy (EC-3D-AFM) to get a more complete understanding of the solid-liquid interface.

MatSE Professor Yingjie Zhang and grad student Kaustubh Panse, who collaborated with a group from The University of Texas at Austin to perform the MD simulations, recently adapted a well-known technique, AFM, to develop EC-3D-AFM, which performs AFM measurements in an electrochemical cell to study changes in surface morphology during electrochemical reactions.

Understanding the boundary between solids and liquids (the solid-liquid interface) is important to understanding how many materials systems, such as batteries and supercapacitors, work. The electric double layers (EDLs) at this interface, also called the solvation layer, refer to parallel layers of charges surrounding the solid. As Panse puts it, "EDLs are liquid molecule layers at the interface, and they occur because the underlying solid influences the liquid above due to the boundary effect and other interactions."

Understanding the EDL helps scientists determine how a system works, but it's tricky. Due to intermolecular (between molecules) and molecule-electrode interactions, it can be difficult to derive the EDL structure.

In this research, the team used ionic liquids (a salt in the liquid state), which are used in various electrochemical applications such as batteries, supercapacitors, and electrolyzers. However, ionic liquids haven't been as extensively studied as aqueous solutions. Panse says that the goal was to develop fundamental theory of how these ionic liquids are arranged on the interface. Furthermore, he explains that "the process that occurs at the interface determines the overall outcome: if molecules are lying flat along the interface, it is possible that can give much more capacitance than if the molecules are lying perpendicularly. Molecular orientation really affects the overall capacitance and the overall performance of the system."

The ionic liquid system used was 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). EMIM-TFSI is a model system used in super capacitors and energy storage devices due to its high capacitive charging window. The team studied this ionic liquid on a series of crystalline electrodes: molybdenum disulfide (MoS2) flakes and highly oriented pyrolytic graphite (HOPG).

These crystalline electrodes are distinct in their electronic properties, meaning that if the ion association is similar on both systems, then those results can be creditably attributed to the EDL rather than electrode interaction. The ionic liquid and electrodes were chosen because they are well-known and well-studied systems, allowing for a fundamental study of the EDL of an ionic liquid. During EC-3D-AFM experiments, how the system behaved at different potentials was measured and compiled to get a complete picture of the EDL.

The team observed strong association and intermolecular interaction among cations (EMIM+) and anions (TSFI-) from the MD simulations. The simulation looked at all the possible pairs of species in the ionic liquid (EMIM+-EMIM+, TFSI--TFSI-, EMIM+-TFSI-) in the first EDL of EMIM-TFSI/MoS2. The results revealed a strong intermolecular interaction between cations (EMIM+) and anions (TFSI-), in contrast to the weaker EMIM+-EMIM+ and TFSI--TFSI- interactions.

Therefore, they propose that the cation-anion association structure of the innermost layer is the key descriptor of the EDL. The simulated EDL structure of EMIM-TFSI on both electrodes were "surprisingly similar" which indicates that electrode-specific interactions are much weaker than the effects of intermolecular interactions among the ionic species.

Those theoretical predictions were confirmed with EC-3D-AFM experiments. They observed a similar response over a range of systems, so "it's highly likely that these descriptors can be widely applied to a large range of electrodes, electrolytes, and different electrochemical systems," Panse says. "We hope that they will serve as a good rational design guide for different electrochemical systems in the future."

Other authors on the paper include Dr. Narayana R. Aluru (professor, Mechanical Engineering and Computational Engineering and Sciences, UT Austin), Dr. Haiyu Wu (postdoc, Mechanical Engineering and Computational Engineering and Sciences, UT Austin, co-first author with Kaustubh Panse), Dr. Shan Zhou (postdoc, Materials Science and Engineering and Materials Research Laboratory, UIUC), and Fujia Zhao (graduate student, Materials Science and Engineering and Materials Research Laboratory, UIUC)

Research Report:Innermost Ion Association Configuration Is a Key Structural Descriptor of Ionic Liquids at Electrified Interfaces


Related Links
The Grainger College of Engineering
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Next generation material that adapts to its history
Espoo, Finland (SPX) Nov 16, 2022
Inspired by living systems, researchers at Aalto University have developed a new material that changes its electrical behaviour based on previous experience, effectively giving it a basic form of adaptive memory. Such adaptive materials could play a vital role in the next generation of medical and environmental sensors, as well as in soft robots or active surfaces. Responsive materials have become common in a range of applications, from glasses that darken in sunlight to drug delivery systems. But ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
AFRL awards contract for pioneering spacecraft in region of Moon

Calnetix Technologies' high-speed blower system delivered to ISS

SmartSat CRC and NASA team up to collaborate on astronaut emergency communications

S.S. Sally Ride delivers experiments to International Space Station

TECH SPACE
NASA Awards SpaceX Second Contract Option for Artemis Moon Landing

Rocket Factory Augsburg to use test infrastructure at DLR Lampoldshausen

SpaceRyde announces multiple launch agreements with ISILAUNCH

To orbit and back with Space Rider

TECH SPACE
Space exploration goes underground

Try, Try Again: Sols 3655-3656

A rover for Mars' moon Phobos

Gediz Vallis Ridge Rising: Sols 3650-3652

TECH SPACE
Shenzhou XIV taikonauts perform third spacewalk

China launches spacecraft carrying cargo for space station

China's cargo spacecraft sets new world record

Next-generation rocket for astronauts expected in 2027

TECH SPACE
AE Industrial Partners completes investment in York Space Systems

Rocket Lab to supply satellite separation systems for Tranche 1 Transport Layer vendors

Maxar-built Galaxy 31 and Galaxy 32 for Intelsat performing properly after launch

Rocket Lab to launch HawkEye 360's Cluster 6 satellites in December

TECH SPACE
How does radiation travel through dense plasma

Turning asphaltene into graphene for composites

ESA experiences COP27 using a space-empowered metaverse

Revolutionizing radar signal processing

TECH SPACE
Early planetary migration can explain missing planets

Oldest planetary debris in our galaxy found from new study

Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

TECH SPACE
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.