24/7 Space News
ICE WORLD
Earlier and earlier high-Arctic spring replaced by extreme year-to-year variation
stock illustration only
Earlier and earlier high-Arctic spring replaced by extreme year-to-year variation
by Staff Writers
Aarhus, Denmark (SPX) Jul 28, 2023

About 15 years ago, researchers reported that the timing of spring in high-Arctic Greenland had advanced at some of the fastest rates of change ever seen anywhere in the world. But, according to new evidence reported in the journal Current Biology on July 26, that earlier pattern has since been completely erased. Instead of coming earlier and earlier, it seems the timing of Arctic spring is now driven by tremendous climate variability with drastic differences from one year to the next.

"As scientists we are obliged to revisit previous work to see whether the knowledge obtained at that time still holds," says Niels Martin Schmidt (@NielsMSchmidt) of Aarhus University in Denmark. "We looked at previously reported extreme rates of phenological advancements in the Arctic and found that directional advancement is no longer the prevailing pattern. Actually, the previously observed trend has disappeared completely and has been replaced by extreme year-to-year variation in the onset of spring."

Global changes in climate are expected to take place faster in the Arctic than in places at lower latitudes. To follow those trends, researchers at Zackenberg in Northeast Greenland launched an ecosystem-wide monitoring program in 1996. Among a suite of ecosystem variables, the program also tracks the timing of spring based on flowering plants, arthropod emergence, and bird nesting.

When the first 10 years of data were analyzed for 1996-2005, the findings showed a clear pattern of advancement across plants and animals included in the study. For instance, they saw some arthropods emerging up to 4 weeks earlier. In the new study, Schmidt and his colleagues wanted to see how these trends look now that they have 15 additional years of data available.

After analyzing the phenological data from 1996-2020, they report little evidence of directional change in the timing of events even as climate change continues. The researchers attribute this shift to a high degree of climate variability from year to year.

"That the extreme rates of phenological advancement we reported back in 2007 would not have continued unabated was not surprising to us," Schmidt said. "However, that we see such a consistent shift from directional to extreme variability across so many different organisms and that the entire ecosystem now seems driven by variation in climatic conditions, was surprising."

Schmidt says that the previous pattern showed steadily rising temperatures and declining snow cover. Now, what they see is a lot messier. Temperature increases have stalled while snow cover fluctuates dramatically from year to year.

"Some years have almost no snow in spring, whereas others have snow on the ground way into the summer season," he says. "This leaves us with a generally warmer but much more unpredictable spring climate-and this is where the second contributor to the observed phenological shift kicks in. Some species appear unable to take advantage of the warmer conditions in spring and appear to have reached the limits of their phenological plasticity."

Plants and animals have some flexibility that allows them to track the climatic conditions in their environment, he explains. Arctic species in particular appear to have a high degree of phenological plasticity. Even so, the new evidence suggests that some species are already being pushed about as far as they can go. For instance, they don't flower as early in warm summers as one might expect. As the Arctic continues to warm, the researchers predict that a growing number of species will become "increasingly out of sync with the climatic conditions."

The new findings highlight the unfortunate reality that the lack in directional change does not mean that the climate is stable. In this case, quite the opposite is true. The climate pattern shows wide variation that may be pushing organisms and whole ecosystems to their limits. The researchers will continue to explore species-specific responses to the shifting climate pattern and its effects on essential interactions, such as pollination. They hope to learn how the responses of an individual species will cascade through the community. The findings are a reminder of the importance of long-term study.

"These insights can only be obtained because of sustained, ecosystem-wide, long-term monitoring with rigorous field sampling across more than 25 years at a very remote corner of the world," Schmidt says. "Continued long-term monitoring is key to understand ecosystems and to detect changes in dynamics."

Research Report:Little directional change in the timing of Arctic spring phenology over the past twenty-five years

Related Links
Aarhus University
Beyond the Ice Age

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ICE WORLD
Scientists warn Atlantic Ocean current could collapse by 2060
Washington DC (UPI) Jul 25, 2023
Some scientists have revealed an ominous climate calculation, based on greenhouse gas emissions, that predicts the Atlantic Ocean's current will collapse around 2060 if nothing changes before then. Researchers at the University of Copenhagen's Niels Bohr Institute and Department of Mathematical Sciences issued the warning Tuesday, in the scientific journal Nature Communications, about the vital ocean currents, which distribute heat, cold and precipitation between the tropics and the northern At ... read more

ICE WORLD
Geophysics student employs 800-year-old method for Lunar GPS system

In new space race, scientists propose geoarchaeology can aid in preserving space heritage

On space, poll shows most Americans support NASA's role, U.S. presence

NASA's Bill Nelson to discuss bilateral cooperation in South America

ICE WORLD
What You Need to Know about NASA's SpaceX Crew-7 Mission

Former Twitter exec says a mercurial Musk rules by 'gut'

Gilmour Space Technologies to accelerate design and manufacturing with Siemens Xcelerator

Kuaizhou 1A launches satellites into orbit

ICE WORLD
Mawrth Vallis region - the deepest clay deposits on Mars

Unveiling Mars' Past: Olympus Mons as a Gigantic Volcanic Isle

Sleeping the Sol Away: Sol 3894

Perseverance sees Mars in a new light

ICE WORLD
China's Space Station Opens Doors to Global Scientific Community

China's Lunar Mission targets manned landing by 2030

Shenzhou XVI crew set to conduct their first EVA

Timeline unveiled for China's advanced manned spacecraft's inaugural flight

ICE WORLD
New Heights for Satellite Communication: Iridium Launches Certus for Aviation

Iridium Board of Directors approves additional share repurchase program

Leaf Space secures additional edging closer to seamless satellite connectivity

Sidus Space to Host SOLAR MEMS Star Tracker on June SpaceX Mission

ICE WORLD
Imaging shows how solar-powered microbes turn CO2 into bioplastic

For decades, artist Eduardo Kac has been laser-focused on sending hologram project into space

Goddard, Wallops Engineers Test Printed Electronics in Space

Optimum Technologies unveils innovative spacecraft facility in Northern Virginia

ICE WORLD
Violent Atmosphere Gives Rare Look at Early Planetary Life

Water discovered in rocky planet-forming zone offers clues on habitability

NASA lab hopes to find life's building blocks in asteroid sample

New study reveals Roman Telescope could find 400 Earth-mass rogue planets

ICE WORLD
SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.