. 24/7 Space News .
EXO WORLDS
Dust Traps: Missing Link in Planet Formation
by Staff Writers
London, UK (SPX) Feb 28, 2017


Formation mechanism of spontaneous dust traps.

Planets are thought to form in the disks of dust and gas found around young stars. But astronomers have struggled to assemble a complete theory of their origin that explains how the initial dust develops into planetary systems. A French-UK-Australian team now think they have the answer, with their simulations showing the formation of 'dust traps' where pebble-sized fragments collect and stick together, to grow into the building blocks of planets. They publish their results in Monthly Notices of the Royal Astronomical Society.

Our solar system, and other planetary systems, began life with disks of gas and dust grains around a young star. The processes that convert these tiny grains, each a few millionths of a metre (a micron) across, into aggregates a few centimetres in size, and the mechanism for making kilometre-sized 'planetesimals' into planetary cores, are both well understood.

The intermediate stage, taking pebbles and joining them together into objects the size of asteroids, is less clear, but with more than 3,500 planets already found around other stars, the whole process must be ubiquitous.

Dr. Jean-Francois Gonzalez, of the Centre de Recherche Astrophysique de Lyon, in France, led the new work. He comments: "Until now we have struggled to explain how pebbles can come together to form planets, and yet we've now discovered huge numbers of planets in orbit around other stars. That set us thinking about how to solve this mystery."

There are two main barriers that need to be overcome for pebbles to become planetesimals. Firstly the drag of gas on dust grains in a disk makes them drift rapidly towards the central star, where they are destroyed, leaving no material to form planets. The second challenge is that growing grains can be broken up in high-speed collisions, breaking them into a large number of smaller pieces and reversing the aggregation process.

The only locations in planet forming disks where these problems can be overcome are so-called 'dust traps.' In these high-pressure regions, the drift motion slows, allowing dust grains to accumulate. With their reduced velocity, the grains can also avoid fragmentation when they collide.

Until now, astronomers thought that dust traps could only exist in very specific environments, but the computer simulations run by the team indicate that they are very common. Their model pays particular attention to the way the dust in a disk drags on the gas component. In most astronomical simulations, gas causes the dust to move, but sometimes, in the dustiest settings, the dust acts more strongly on the gas.

This effect, known as aerodynamic drag back-reaction, is usually negligible, so up to now has been ignored in studies of growing and fragmenting grains. But its effects become important in dust rich environments, like those found where planets are forming.

The effect of the back-reaction is to slow the inward drift of the grains, which gives them time to grow in size. Once large enough, the grains are their own masters, and the gas can no longer govern their motion. The gas, under the influence of this back-reaction, will be pushed outwards and form a high-pressure region: the dust trap. These spontaneous traps then concentrate the grains coming from the outer disk regions, creating a very dense ring of solids, and giving a helping hand to the formation of planets.

Gonzalez concludes: "We were thrilled to discover that, with the right ingredients in place, dust traps can form spontaneously, in a wide range of environments. This is a simple and robust solution to a long standing problem in planet formation."

Observatories like ALMA in Chile already see bright and dark rings in forming planetary systems that are thought to be dust traps. Gonzalez and his team, and other research groups around the world, now plan to extend the trap model all the way to the formation of planetesimals.

Research Report: "Self-Induced Dust Traps: Overcoming Planet Formation Barriers," J.-F. Gonzalez, G. Laibe and S. T. Maddison, 2017 Feb. 28, Monthly Notices of the Royal Astronomical Society

EXO WORLDS
The missing link in how planets form
Melbourne, Australia (SPX) Mar 01, 2017
A French-UK-Australian team of astronomers may have discovered in planet formation that explains how initial dust develops into planetary systems. Using numerical simulations and analytical calculations, researchers from Swinburne University of Technology, Lyon University and St. Andrews University have developed a theory that explains the growth of solid particles from pebbles to planetesimals (asteroid-like bodies). ... read more

Related Links
Royal Astronomical Society
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
How bright is the future of space food

Marshall shakes, packs, ships and tracks NASA payloads

Guardsmen to test space capsule recovery systems

NASA and SpaceX gives ASU a competitive edge in technological innovation

EXO WORLDS
SpaceX says it will fly civilians to the moon next year

Flight Hardware for NASA's Space Launch System on Its Way to Cape

Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

Sounding Rocket Flies in Alaska to Study Auroras

EXO WORLDS
Martian Winds Carve Mountains, Move Dust, Raise Dust

Science checkout continues for ExoMars orbiter

More Earth-like than moon-like

NASA Explores Opportunity for Smaller Experiments to 'Hitch a Ride' to Mars

EXO WORLDS
China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

EXO WORLDS
Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

EXO WORLDS
When Rocket Science Meets X-ray Science

York Space partners with Metropolitan State for Denver satellite facility

New 'tougher-than-metal' fiber-reinforced hydrogels

Raytheon gets contract for Silent Knight radar systems

EXO WORLDS
Volcanic hydrogen spurs chances of finding exoplanet life

Evidence of Star Wars-like Planetary System

The missing link in how planets form

Does Pluto Have The Ingredients For Life?

EXO WORLDS
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.