. 24/7 Space News .
ROBO SPACE
Does this artificial intelligence think like a human?
by Adam Zewe for MIT News
Boston MA (SPX) Apr 07, 2022

stock illustration only

In machine learning, understanding why a model makes certain decisions is often just as important as whether those decisions are correct. For instance, a machine-learning model might correctly predict that a skin lesion is cancerous, but it could have done so using an unrelated blip on a clinical photo.

While tools exist to help experts make sense of a model's reasoning, often these methods only provide insights on one decision at a time, and each must be manually evaluated. Models are commonly trained using millions of data inputs, making it almost impossible for a human to evaluate enough decisions to identify patterns.

Now, researchers at MIT and IBM Research have created a method that enables a user to aggregate, sort, and rank these individual explanations to rapidly analyze a machine-learning model's behavior. Their technique, called Shared Interest, incorporates quantifiable metrics that compare how well a model's reasoning matches that of a human.

Shared Interest could help a user easily uncover concerning trends in a model's decision-making - for example, perhaps the model often becomes confused by distracting, irrelevant features, like background objects in photos. Aggregating these insights could help the user quickly and quantitatively determine whether a model is trustworthy and ready to be deployed in a real-world situation.

"In developing Shared Interest, our goal is to be able to scale up this analysis process so that you could understand on a more global level what your model's behavior is," says lead author Angie Boggust, a graduate student in the Visualization Group of the Computer Science and Artificial Intelligence Laboratory (CSAIL).

Boggust wrote the paper with her advisor, Arvind Satyanarayan, an assistant professor of computer science who leads the Visualization Group, as well as Benjamin Hoover and senior author Hendrik Strobelt, both of IBM Research. The paper will be presented at the Conference on Human Factors in Computing Systems.

Boggust began working on this project during a summer internship at IBM, under the mentorship of Strobelt. After returning to MIT, Boggust and Satyanarayan expanded on the project and continued the collaboration with Strobelt and Hoover, who helped deploy the case studies that show how the technique could be used in practice.

Human-AI alignment
Shared Interest leverages popular techniques that show how a machine-learning model made a specific decision, known as saliency methods. If the model is classifying images, saliency methods highlight areas of an image that are important to the model when it made its decision. These areas are visualized as a type of heatmap, called a saliency map, that is often overlaid on the original image. If the model classified the image as a dog, and the dog's head is highlighted, that means those pixels were important to the model when it decided the image contains a dog.

Shared Interest works by comparing saliency methods to ground-truth data. In an image dataset, ground-truth data are typically human-generated annotations that surround the relevant parts of each image. In the previous example, the box would surround the entire dog in the photo. When evaluating an image classification model, Shared Interest compares the model-generated saliency data and the human-generated ground-truth data for the same image to see how well they align.

The technique uses several metrics to quantify that alignment (or misalignment) and then sorts a particular decision into one of eight categories. The categories run the gamut from perfectly human-aligned (the model makes a correct prediction and the highlighted area in the saliency map is identical to the human-generated box) to completely distracted (the model makes an incorrect prediction and does not use any image features found in the human-generated box).

"On one end of the spectrum, your model made the decision for the exact same reason a human did, and on the other end of the spectrum, your model and the human are making this decision for totally different reasons. By quantifying that for all the images in your dataset, you can use that quantification to sort through them," Boggust explains.

The technique works similarly with text-based data, where key words are highlighted instead of image regions.

Rapid analysis
The researchers used three case studies to show how Shared Interest could be useful to both nonexperts and machine-learning researchers.

In the first case study, they used Shared Interest to help a dermatologist determine if he should trust a machine-learning model designed to help diagnose cancer from photos of skin lesions. Shared Interest enabled the dermatologist to quickly see examples of the model's correct and incorrect predictions. Ultimately, the dermatologist decided he could not trust the model because it made too many predictions based on image artifacts, rather than actual lesions.

"The value here is that using Shared Interest, we are able to see these patterns emerge in our model's behavior. In about half an hour, the dermatologist was able to make a confident decision of whether or not to trust the model and whether or not to deploy it," Boggust says.

In the second case study, they worked with a machine-learning researcher to show how Shared Interest can evaluate a particular saliency method by revealing previously unknown pitfalls in the model. Their technique enabled the researcher to analyze thousands of correct and incorrect decisions in a fraction of the time required by typical manual methods.

In the third case study, they used Shared Interest to dive deeper into a specific image classification example. By manipulating the ground-truth area of the image, they were able to conduct a what-if analysis to see which image features were most important for particular predictions.

The researchers were impressed by how well Shared Interest performed in these case studies, but Boggust cautions that the technique is only as good as the saliency methods it is based upon. If those techniques contain bias or are inaccurate, then Shared Interest will inherit those limitations.

In the future, the researchers want to apply Shared Interest to different types of data, particularly tabular data which is used in medical records. They also want to use Shared Interest to help improve current saliency techniques. Boggust hopes this research inspires more work that seeks to quantify machine-learning model behavior in ways that make sense to humans.

This work is funded, in part, by the MIT-IBM Watson AI Lab, the United States Air Force Research Laboratory, and the United States Air Force Artificial Intelligence Accelerator.

Research Report: "Shared Interest: Measuring Human-AI Alignment to Identify Recurring Patterns in Model Behavior"


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Teleoperation steps in when an autonomous vehicle does not know what to do
Braunschweig, Germany (SPX) Apr 07, 2022
In the not-too-distant future, autonomous, networked vehicles will be able to handle most tasks independently. However, they are not yet capable of dealing with all traffic situations. If they encounter a problem that they do not know how to solve, safety comes first. Most of the time this would mean pulling over to the side of the road and stopping. The German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) is conducting research into the teleoperation of these vehicles in order to re ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
First private mission reaches International Space Station

Ax-1: why the private mission to the International Space Station is a gamechanger

Commercial research expands aboard the International Space Station

Station waits for private astronauts during science and spacewalk preps

ROBO SPACE
First private mission launches to ISS

SpaceX launches first private astronaut mission to ISS

Astranis Space Technologies signs with SpaceX for dedicated launch in 2023

SpinLaunch signs Space Act Agreement to test innovative mass accelerator launch system

ROBO SPACE
Got a hitch in our giddyup - Sols 3437-3438

Balancing Risks in the Seitah Region for Flight 24

Sol 3435: Maybe We Should Switch Names

Making Tracks to the Delta

ROBO SPACE
Tianzhou 2 re-enters Earth's atmosphere, mostly burns up

Shenzhou XIII astronauts prep for return

China's Tianzhou-2 cargo craft leaves space station core module

China's space station to support large-scale scientific research

ROBO SPACE
Beyond Gravity to develop dispenser for Project Kuiper's satellite constellation

Benchmark Space Systems triples production capacity to meet thruster and in-space mobility demand

Amazon signs on launch partners for space internet

Blue Canyon Technologies to supply spacecraft buses for HelioSwarm Mission

ROBO SPACE
China approves first new gaming titles in nine months

When art collectors chucked NFTs worth millions in the garbage

Tencent shuts game streaming site after China blocks merger

First integrated laser on lithium niobate chip

ROBO SPACE
A Beacon in the Galaxy: Updated Arecibo Message for Potential FAST and SETI Projects

Cosmic SETI ready to stream data for technosignature research from Jansky VLA

Prenatal protoplanet upends planet formation models

Hubble finds a planet forming in an unconventional way

ROBO SPACE
SwRI scientists connect the dots between Galilean moon, auroral emissions on Jupiter

Juice's journey and Jupiter system tour

Pluto's giant ice volcanos may have formed from multiple eruption events

Chaos terrains on Europa could be shuttling oxygen to ocean









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.