. 24/7 Space News .
Dirty Space And Supernovae

A file image of a Type 1A Supernova event captured by astronomer Teb Dobosz in a galaxy far far away.
by Staff Writers
Washington, DC (SPX) Mar 03, 2008
Interstellar space may be strewn with tiny whiskers of carbon, dimming the light of far-away objects. This discovery by scientists at the Carnegie Institution may have implications for the "dark energy" hypothesis, proposed a decade ago in part to explain the unexpected dimness of certain stellar explosions called Type1a supernovae.

Type1a supernovae are among the brightest objects in the universe. Astronomers use them as "standard candles" to gauge cosmological distances: brighter-appearing supernovae are closer, dimmer ones are farther away.

In the late 1990s some astronomers noticed that some seemed too dim-too far away-to be explained by conventional theories of the universe's expansion. This led to the hypothesis that the expansion was accelerating, pushed along by an unknown form of energy - dark energy.

In the current study, published in the February 29 issue of Science, Andrew Steele and Marc Fries of the Carnegie Institution's Geophysical Laboratory report the discovery of an unusual new form of carbon in minerals within meteorites dating from the formation of the solar system.

These "graphite whiskers" were likely produced from carbon-rich gas at high temperatures and were found within features called calcium-aluminum inclusions, which at around 4.5 billion years old are the oldest known solids in our solar system.

"During this time when the sun was young, the solar wind was very strong," says Fries. "So graphite whiskers formed near the sun could have been blown into interstellar space. The same thing may have happened around other young stars as well."

Graphite whiskers might also be produced and dispersed into space by supernovae explosions.

A thin interstellar haze of graphite whiskers spewed from stars and supernovae would affect how different wavelengths of light pass through space. It has been postulated that wavelengths in the near infrared would be particularly affected.

It is the dimming of light from Type 1a supernovae at these wavelengths that first led researchers to think that the universe's expansion was accelerating and that therefore a hitherto unknown force "dark energy"must exist.

However, since the 1970s it has been postulated that graphite or other whisker-like materials could explain the observations. The presence of graphite whiskers in space has never been confirmed until this study.

With the discovery of graphite whiskers in the meteorite, researchers can test their properties against the cosmological models and astronomical observations.

"If graphite whiskers in space are absorbing supernovae's light," says Steele, "then this could affect measurements of the rate of the universe's expansion.

While we cannot comment further on the effects of whiskers on the dark energy hypothesis it is important to study the characteristics of this form of carbon carefully so we can understand its impact on dark energy models. We'll then feed this data forward to the upcoming NASA and ESA (European Space Agency) missions that will look for the effects of dark energy."

Community
Email This Article
Comment On This Article

Related Links
Carnegie Institution
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Small Helper Stars Needed For Massive Star Formation
Berkeley CA (SPX) Mar 03, 2008
In order for a rare, massive star to form inside an interstellar cloud of gas and dust, small "helper" stars about the size of the sun must first set the stage, according to a new theory proposed by astrophysicists at the University of California, Berkeley, and Princeton University.







  • Jules Verne ATV Atop Launcher
  • Killer Electrons Surf Celestial Tsunamis
  • NASA adds technologies Web feature
  • View From The Top At The Vehicle Assemby Building

  • Study casts doubt on Mars water find
  • Mars Express One Of Three Orbiters Preparing For Phoenix Landing
  • Opportunity Proceeds With Caution On Sandy Slopes
  • How The Atmospheres Of Mars And Venus Are Affected By Carbon Monoxide

  • ILS Announces Contract To Launch Two Sirius Satellite Radio Spacecraft On Proton Breeze M
  • Arianespace Prepares For Its First Two Ariane 5 Missions Of 2008
  • Russia's Proton-M To Orbit Another UAE Telecoms Satellite
  • ILS Proton To Launch S2M Satellite For Mobile TV Service In Middle East And North Africa

  • Falcon Investigates Pollution From The Dakar Metropolis Into Desert Dust Layers
  • NASA Extends Mission For Ball Aerospace-Built ICESat
  • CIRA Scientist Among Authors Of Book Celebrating 50 Years Of Earth Observations From Space
  • Indonesia To Develop New EO Satellite

  • New Horizons Crosses 9 AU
  • ASU Research Solves Solar System Quandary
  • Happy Second Birthday New Horizons
  • The PI's Perspective: Autumn 2007: Onward to the Kuiper Belt

  • Small Helper Stars Needed For Massive Star Formation
  • Dirty Space And Supernovae
  • US Experiment Takes The Lead In The Competitive Race To Find Dark Matter
  • NASA's Swift Satellite Images A Galaxy Ablaze With Starbirth

  • Preparation For The Next Lunar Landing Leaps Across The Generation Gap
  • NASA Collaborates With Astronomers In Search For Moon Water
  • NASA shows off a moon robot
  • Northrop Grumman Integrating LCROSS Instruments

  • ATK Conducts Advanced Anti-Radiation Guided Missile Flight Test
  • Its 10 In The Morning, Do You Know Where Your Employees And Equipment Are
  • Watsontown Trucking Deploys DriverTech Fleet-Wide
  • Exaktime Brings Next Gen Time And Attendance Tracking To Mobile Work Crews With PocketClock/GPS

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement