. 24/7 Space News .
CARBON WORLDS
Diamonds are a quantum scientist's best friend
by Staff Writers
Johannesburg, South Africa (SPX) Oct 08, 2020

Professor Somnath Bhattacharyya next to the vapour deposition chamber that is used to produce diamonds in the lab.

Diamonds have a firm foothold in our lexicon. Their many properties often serve as superlatives for quality, clarity and hardiness. Aside from the popularity of this rare material in ornamental and decorative use, these precious stones are also highly valued in industry where they are used to cut and polish other hard materials and build radiation detectors.

More than a decade ago, a new property was uncovered in diamonds when high concentrations of boron are introduced to it - superconductivity. Superconductivity occurs when two electrons with opposite spin form a pair (called a Cooper pair), resulting in the electrical resistance of the material being zero.

This means a large supercurrent can flow in the material, bringing with it the potential for advanced technological applications. Yet, little work has been done since to investigate and characterise the nature of a diamond's superconductivity and therefore its potential applications.

New research led by Professor Somnath Bhattacharyya in the Nano-Scale Transport Physics Laboratory (NSTPL) in the School of Physics at the University of the Witwatersrand in Johannesburg, South Africa, details the phenomenon of what is called "triplet superconductivity" in diamond.

Triplet superconductivity occurs when electrons move in a composite spin state rather than as a single pair. This is an extremely rare, yet efficient form of superconductivity that until now has only been known to occur in one or two other materials, and only theoretically in diamonds.

"In a conventional superconducting material such as aluminium, superconductivity is destroyed by magnetic fields and magnetic impurities, however triplet superconductivity in a diamond can exist even when combined with magnetic materials. This leads to more efficient and multifunctional operation of the material," explains Bhattacharyya.

The team's work has recently been published in an article in the New Journal of Physics, titled "Effects of Rashba-spin-orbit coupling on superconducting boron-doped nanocrystalline diamond films: evidence of interfacial triplet superconductivity".

This research was done in collaboration with Oxford University (UK) and Diamond Light Source (UK). Through these collaborations, beautiful atomic arrangement of diamond crystals and interfaces that have never been seen before could be visualised, supporting the first claims of 'triplet' superconductivity.

Practical proof of triplet superconductivity in diamonds came with much excitement for Bhattacharyya and his team. "We were even working on Christmas day, we were so excited," says Davie Mtsuko. "This is something that has never been before been claimed in diamond," adds Christopher Coleman. Both Mtsuko and Coleman are co-authors of the paper.

Despite diamonds' reputation as a highly rare and expensive resource, they can be manufactured in a laboratory using a specialised piece of equipment called a vapour deposition chamber. The Wits NSTPL has developed their own plasma deposition chamber which allows them to grow diamonds of a higher than normal quality - making them ideal for this kind of advanced research.

This finding expands the potential uses of diamond, which is already well-regarded as a quantum material.

"All conventional technology is based on semiconductors associated with electron charge. Thus far, we have a decent understanding of how they interact, and how to control them. But when we have control over quantum states such as superconductivity and entanglement, there is a lot more physics to the charge and spin of electrons, and this also comes with new properties," says Bhattacharyya. "

With the new surge of superconducting materials such as diamond, traditional silicon technology can be replaced by cost effective and low power consumption solutions".

The induction of triplet superconductivity in diamond is important for more than just its potential applications. It speaks to our fundamental understanding of physics. "Thus far, triplet superconductivity exists mostly in theory, and our study gives us an opportunity to test these models in a practical way," says Bhattacharyya.


Related Links
University Of The Witwatersrand
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Turning diamond into metal
Boston MA (SPX) Oct 07, 2020
Long known as the hardest of all natural materials, diamonds are also exceptional thermal conductors and electrical insulators. Now, researchers have discovered a way to tweak tiny needles of diamond in a controlled way to transform their electronic properties, dialing them from insulating, through semiconducting, all the way to highly conductive, or metallic. This can be induced dynamically and reversed at will, with no degradation of the diamond material. The research, though still at an early p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA science and cargo on route to ISS on Northrop Grumman Resupply Mission

Russian ISS module to be filled with confetti to find microscopic air leak

ISS Crew instructed to resolve air leak issue before mission change in Mid-October

Russia to launch two new modules to Space Station in April, September 2021

CARBON WORLDS
SpaceX aborts GPS satellite launch from Florida

SpaceX aborts Starlink satellite launch attempt

Gryphon Technologies wins $14M DARPA task order to support the DRACO program

NASA, SpaceX to launch first Commercial Crew rotation mission to International Space Station

CARBON WORLDS
The topography of the Jezero crater landing site of NASA's Mars 2020 mission

NASA's New Mars Rover Is Ready for Space Lasers

ExoMars moves on

Study: Mars has four bodies of water underneath surface

CARBON WORLDS
NASA chief warns Congress about Chinese space station

China's new carrier rocket available for public view

China sends nine satellites into orbit by sea launch

Chinese spacecraft launched mystery object into space before returning to Earth

CARBON WORLDS
Court approves sale of OneWeb to the UK Government and Bharti Global

Swarm announces pricing for world's lowest-cost satellite communications network

NanoAvionics launches second satellite for Lacuna Space's growing IoT satellite constellation

Machine-learning nanosats to inform global trade

CARBON WORLDS
Secretive Big Data firm Palantir makes low-key stocks debut

NASA looks to advance 3D Printing construction systems for the Moon and Mars

Greece, Microsoft announce 1-bn-euro cloud investment

New study on the space durability of 3D-printed nanocomposites

CARBON WORLDS
First direct observation of exoplanet Beta Pictoris c

Search for New Worlds at Home with NASA's Planet Patrol Project

Is there other life in the universe

CHEOPS space telescope makes ultra-precise temperature and size measurements of an unusual giant planet

CARBON WORLDS
SwRI study describes discovery of close binary trans-Neptunian object

JPL meets unique challenge, delivers radar hardware for Jupiter Mission

Astronomers characterize Uranian moons using new imaging analysis

Jupiter's moons could be warming each other









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.