. 24/7 Space News .
ENERGY TECH
Demonstration of alpha particle confinement capability in helical fusion plasmas
by Staff Writers
Tokyo, Japan (SPX) Jul 31, 2019

Inside of the Large Helical Device. High-temperature plasma is confined by the two helical superconducting coils.

A team of fusion researchers succeeded in proving that energetic ions with energy in mega electron volt (MeV) range are superiorly confined in a plasma for the first time in helical systems. This promises the alpha particle (helium ion) confinement required for realizing fusion energy in a helical reactor.

The deuterium-tritium reaction in a high-temperature plasma will be used in fusion reactors in the future. Alpha particles with 3.5 MeV energy are generated by the fusion reaction. The alpha particles transfer their energy to the plasma, and this alpha particle heating sustains the high-temperature plasma condition required for the fusion reaction.

In order to realize such a plasma, which is called a burning plasma, the energetic ions in MeV range must be superiorly confined in the plasma.

Numerical simulations predicted the favorable results of MeV ion confinement in a plasma in helical systems that have the advantage of steady-state operation in comparison with tokamak systems. However, demonstration of MeV ion confinement by experiment had not been reported.

Recently, the study has greatly advanced by MeV ion confinement experiment performed in the deuterium operation of the Large Helical Device (LHD), which is owned by National Institute for Fusion Science (NIFS), National Institutes of Natural Sciences (NINS), in Japan.

In deuterium plasmas, 1 MeV tritons (tritium ions) are created by deuteron-deuteron fusion reactions. The tritons have the similar behavior with alpha particles generated in a future burning plasma.

The research group led by Assistant Professor Kunihiro Ogawa and Professor Mitsutaka Isobe of NIFS has performed MeV triton confinement experiment in LHD. The tritons confined in the plasma undergo secondary reaction and emit high-energy neutrons by fusion reaction with background deuterons (deuterium ions).

The research group developed the detector for selective measurement of the high-energy neutrons to evaluate the MeV ion confinement performance. The high-energy neutrons were measured for different magnetic-field configurations.

When the magnetic field axis is shifted inward, the MeV ion confinement shows better performance. The result obtained by this study proves the MeV ion confinement for the first time in helical systems. This promises the alpha particle confinement required for realizing fusion energy in a helical reactor.

Research Report: "Energetic ion confinement studies using comprehensive neutron diagnostics in the Large Helical Device"


Related Links
National Institutes of Natural Sciences
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
A new way to measure the stability of next-generation magnetic fusion devices
Plainsboro NJ (SPX) Jul 11, 2019
Scientists seeking to bring to Earth the fusion that powers the sun and stars must control the hot, charged plasma - the state of matter composed of free-floating electrons and atomic nuclei, or ions - that fuels fusion reactions. For scientists who confine the plasma in magnetic fields, a key task calls for mapping the shape of the fields, a process known as measuring the equilibrium, or stability, of the plasma. At the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory ( ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
French inventor to hover across English Channel on 'flyboard'

US spacecraft's solar sail successfully deploys

Indigenous Congo foragers learn early to use sun for orientation

Japan's Noguchi to Be 1st Foreign Astronaut to Join New US Spacecraft Crew for ISS Mission

ENERGY TECH
SpaceX cargo launch to space station now targeting Wednesday

Apollo's legacy: A quiet corner of Alabama that is forever Germany

India to make new bid to launch Moon rocket on Monday

Von Braun: Apollo hero, rocket builder for Hitler, father

ENERGY TECH
Europe prepares for Mars courier

Fueling of NASA's Mars 2020 rover power system begins

ExoMars radio science instrument readied for Red Planet

Mars 2020 Rover: T-Minus One Year and Counting

ENERGY TECH
Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

China plans to deploy almost 200 AU-controlled satellites into orbit

ENERGY TECH
OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Why isn't Australia in deep space?

Maintaining large-scale satellite constellations using logistics approach

Maxar begins production on Legion-class satellite for Ovzon

ENERGY TECH
Finding alternatives to diamonds for drilling

Electronic chip mimics the brain to make memories in a flash

First of Two Van Allen Probes Spacecraft Ceases Operations

NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times

ENERGY TECH
ELSI scientists discover new chemistry that may help explain the origins of cellular life

Scientists deepen understanding of magnetic fields surrounding Earth and other planets

Super salty, subzero Arctic water provides peek at possible life on other planets

Astronomers expand cosmic "cheat sheet" in hunt for life

ENERGY TECH
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.