. 24/7 Space News .
STELLAR CHEMISTRY
Dark matter from the depths of the universe
by Staff Writers
Mainz, Germany (SPX) Nov 12, 2020

The merger of black holes could release energy in the form of ELFs (bottom left of the image). It might be possible to detect their weak signals with quantum sensor networks such as the GPS network (top right in the image).

Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms. Exotic low-mass fields (ELFs), for example, could propagate through space and cause feeble signals detectable with quantum sensor networks such as the atomic clocks of the GPS network or the magnetometers of the GNOME network.

These are the results of theoretical calculations undertaken by a research group including Dr. Arne Wickenbrock of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM). They are particularly interesting in the context of the search for dark matter, as low-mass fields are regarded as promising candidates for this exotic form of matter.

From multi-messenger astronomy to the search for dark matter
Multi-messenger astronomy involves the coordinated observation of disparate signals that stem from the same astrophysical event. Since the first detection of gravitational waves with the LIGO interferometer several years ago, the interest in this field has expanded enormously and it has yielded a tremendous amount of new information originating from the depths of the universe.

"When gravitational waves are generated somewhere in space and detected on Earth, numerous telescopes now focus on the event to record various signals, such as those in the form of electromagnetic radiation, for instance," explains Arne Wickenbrock.

"We asked ourselves what would happen if part of the observed energy released by such events was also radiated in the form of exotic low-mass fields or ELFs. Would we be able to detect them with our existing networks of quantum sensors?"

The scientists' calculations have confirmed that this could be the case for certain parameters. "We also reasoned that such fields, when radiated, would cause a characteristic frequency signature in the networks," adds Arne Wickenbrock. "The signal would be similar to the sound of a passing siren, sweeping from high to low frequencies."

The researchers have two particular networks in mind: the worldwide GPS network of atomic clocks and the GNOME network, which is comprised of a multitude of magnetometers distributed around the globe.

On the basis of the expected strength of the signal, the GPS system should currently be sensitive enough to detect ELFs. The work group of JGU Professor Dmitry Budker at HIM, together with other teams, is currently upgrading the GNOME network, and on completion this should also be sensitive enough to observe such events.

Potential ELFs are of particular significance in the search for dark matter. Although we know this strange form of matter must exist, nobody yet knows what it is made of. Specialists are considering and researching a whole range of possible particles that might theoretically qualify as candidates.

Among the most promising current candidates are extremely light bosonic particles, which can also be seen in terms of a classic field oscillating at a particular frequency. "Thus, in the depths of the universe, dark matter in the form of ELFs may be created during the merger of two black holes," concludes Arne Wickenbrock.

"Precision quantum sensor networks, in turn, could function as ELF telescopes, adding another important element to the toolbox of multi-messenger astronomy."

Research paper


Related Links
Johannes Gutenberg Universitaet Mainz
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Seeing dark matter in a new light
London, UK (SPX) Nov 09, 2020
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method. The work is published in Monthly Notices of the Royal Astronomical Society. Scientists currently estimate that up to 85% of the mass in the universe is effectively invisible. This 'dark matter' cannot be observed directly, because it does not interact with light in the same way as the ordinary matter that makes up ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
The Personal Preference Kit: What Astronauts Take With Them To Space

NASA Commercial Crew program kicks off spaceflight renaissance

Dartmouth to conduct ISS research with NSF grant

Crops bred in space produce heavenly results

STELLAR CHEMISTRY
Astronauts board ISS from SpaceX's 'Resilience'

NIST designs a prototype fuel gauge for orbit

European space rocket launch fails minutes after takeoff

Spaceflight unveils propulsive orbital transfer vehicles for custom orbital destinations

STELLAR CHEMISTRY
NASA rover has less than 100 days until reaching the red planet

Mars Is Getting a New Robotic Meteorologist

Preparing for a human mission to Mars

Gravity Assist: Mars Takes a Breath, with Jen Eigenbrode

STELLAR CHEMISTRY
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

STELLAR CHEMISTRY
China launches new mobile telecommunication satellite

EMXYS news release Series A funding round closed

Telesat finalizes deal with Canadian Government to bridge Canada's digital divide

Kleos Space raises 13.8 million USD to progress next satellite clusters

STELLAR CHEMISTRY
3D print experts discover how to make tomorrow's technology using ink-jet printed graphene

New PlayStation hits market as console battle with Xbox begins

Smaller than ever - exploring the unusual properties of quantum-sized materials

Smart concrete could pave the way for high-tech, cost-effective roads

STELLAR CHEMISTRY
Life's building blocks can form in interstellar clouds without stellar fusion

Climate Stabilization on Distant Worlds

Cysteine synthesis was a key step in the origin of life

Ariel moves from blueprint to reality

STELLAR CHEMISTRY
Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto

Where were Jupiter and Saturn born?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.