. 24/7 Space News .
ROBO SPACE
DARPA assured autonomy seeks to guarantee safety of learning-enabled autonomous systems
by Staff Writers
Washington DC (SPX) Aug 21, 2017


Building on recent breakthroughs in autonomous cyber systems and formal methods, DARPA has announced a new research program called Assured Autonomy. Assured Autonomy aims to advance the ways computing systems can learn and evolve to better manage variations in the environment and enhance the predictability of autonomous systems like driverless vehicles, which are descendants of research pioneered more than a decade ago in DARPA's 2005 Grand Challenge.

Building on recent breakthroughs in autonomous cyber systems and formal methods, DARPA has announced a new research program called Assured Autonomy that aims to advance the ways computing systems can learn and evolve to better manage variations in the environment and enhance the predictability of autonomous systems like driverless vehicles and unmanned aerial vehicles (UAVs).

"Tremendous advances have been made in the last decade in constructing autonomy systems, as evidenced by the proliferation of a variety of unmanned vehicles. These advances have been driven by innovations in several areas, including sensing and actuation, computing, control theory, design methods, and modeling and simulation," said Sandeep Neema, program manager at DARPA.

"In spite of these advances, deployment and broader adoption of such systems in safety-critical DoD applications remains challenging and controversial."

The Defense Science Board Report on Autonomy, released in 2016, heavily emphasizes the need for autonomous systems to have a strong degree of trust. Assuring systems operate safely and perform as expected, the report notes, is integral to trust, especially in a military context.

But systems must also be designed so that operators can determine whether, once it has been deployed, it is operating reliably, and, if not, that appropriate action can be taken. Assured Autonomy aims to establish trustworthiness at the design stage and incorporate sufficient capabilities so that inevitable variations in operational trustworthiness can be measured and addressed appropriately.

"Historically, assurance has been approached through design processes following rigorous safety standards in development, and demonstrated compliance through system testing," said Neema. "However, these standards have been developed primarily for human-in-the-loop systems, and don't extend to learning-enabled systems with advanced levels of autonomy. The assurance approaches today are predicated on the assumption that the systems, once deployed, do not learn and evolve."

One approach to assurance of autonomous systems that has recently garnered attention, particularly in the context of self-driving vehicles, is based on the idea of "equivalent levels of safety," i.e., the autonomous system must be at least as safe as a comparable human-in-the-loop system that it replaces.

The approach compares known rates of safety incidents of manned systems-number of accidents per thousands of miles driven-and conducting physical trials to determine the corresponding incident rate for autonomous systems.

Studies and analyses indicate, however, that assuring safety of autonomous systems in this manner alone is prohibitive, requiring millions of physical trials, perhaps spanning decades. Simulation techniques have been advanced to reduce the needed number of physical trials, but offer very little confidence, particularly with respect to low-probability, high-consequence events.

In contrast to prescriptive, process-oriented standards for safety and assurance, a goal-oriented approach, such as the one espoused by Neema, is arguably more suitable for systems that learn, evolve, and encounter operational variations. In the course of Assured Autonomy program, researchers will aim to develop tools that provide foundational evidence that a system can satisfy explicitly stated functional and safety goals, resulting in a measure of assurance that can also evolve with the system.

ROBO SPACE
Northrop Grumman to demonstrate autonomous networked unmanned vehicles
Washington (UPI) Aug 14, 2017
Northrop Grumman will demonstrate autonomous unmanned undersea and unmanned surface vehicles at the Advanced Naval Technology Exercise at the Naval Surface Warfare Center this week. The demonstration will coordinate multiple undersea and surface autonomous vehicles alongside an aerial vehicle to collect targeting data for enemy seabed infrastructure, followed by an undersea vehicle enga ... read more

Related Links
Assured Autonomy at DARPA
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
NASA Offers Space Station as Catalyst for Discovery in Washington

Two Voyagers Taught Us How to Listen to Space

A look inside the Space Station's experimental BEAM module

Voyager spacecraft still in communication 40 years out into the void

ROBO SPACE
New thruster design increases efficiency for future spaceflight

Russia's S7 group plans to resume Zenit launches from Sea Launch platform

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SpaceX Sets August 14 Launch Date for Next US Resupply Mission to ISS

ROBO SPACE
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

ROBO SPACE
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

ROBO SPACE
Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

ROBO SPACE
Air Force tests new radar receivers for rescue helicopters

Lockheed Martin integrates first modernized A2100 satellite

Marine Corps testing mobile 3D printing lab

Surprise discovery in the search for energy efficient information storage

ROBO SPACE
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Deep-sea animals eating plastic fibers from clothing

ROBO SPACE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.