. | . |
DARPA Seeks to Improve Military Communications with Digital Phased-Arrays at Millimeter Wave by Staff Writers Washington DC (SPX) Jan 25, 2018
There is increasing interest in making broader use of the millimeter wave frequency band for communications on small mobile platforms where narrow antenna beams from small radiating apertures provide enhanced communication security. Today's millimeter wave systems, however, are not user friendly and are designed to be platform specific, lacking interoperability and are thus reserved for only the most complex platforms. To expand the use of millimeter wave phased-arrays and make them broadly applicable across DoD systems, many technical challenges must be addressed, including wideband frequency coverage, precision beam pointing, user discover and mesh networking. The use of multi-beam phased arrays as well as advances in digital radio and millimeter wave technology have propelled technology to the current state, and now there is a paradigm shift on the horizon as millimeter wave phased-arrays are poised to change communication and networked mobile platforms. Phased-arrays operating at millimeter wave-or very high frequencies-are already an active area of research by the emerging 5G cellular market. Commercial applications are primarily solving the "last mile" problem, where consumers are demanding more bandwidth for high-throughput applications over relatively short ranges at predetermined frequencies and with minimal obstacles to user discovery. DoD platforms on the other hand create far more complex communications environments. Often separated by tens or even hundreds of nautical miles, today's military platforms are moving in three dimensions with unknown orientations. This environment is creating unique beamforming challenges that can't easily be solved by applying current communications approaches. "Imagine two aircraft both traveling at high speed and moving relative to one another," said DARPA program manager Timothy Hancock. "They have to find each other in space to communicate with directional antenna beams, creating a very difficult challenge that can't be solved with the phased-array solutions emerging in the commercial marketplace." To address these challenges, DARPA is launching the Millimeter-Wave Digital Arrays (MIDAS) program. Announced today, the program aims to develop element-level digital phased-array technology that will enable next generation DoD millimeter wave systems. To help solve the adaptive beamforming problem and ensure wide application of the resulting solutions, MIDAS seeks to create a common digital array tile that will enable multi-beam directional communications. Research efforts will focus on reducing the size and power of digital millimeter wave transceivers, enabling phased-array technology for mobile platforms and elevating mobile communications to the less crowded millimeter wave frequencies. Advances in element-level digital beamforming in phased-array designs is enabling new multi-beam communications schemes-or the use of several beams receiving and transmitting in multiple directions simultaneously-to help significantly reduce node discovery time and improve network throughput. "While critical to the next generation of phased-arrays, today's digital beamforming is limited to lower frequencies, making the resulting arrays too large for use on small mobile platforms," said Hancock. To reduce the size of the arrays, advances in millimeter wave technology will help push the frequency of operation to higher bands, bringing the capabilities of directional antennas to small mobile platforms. "Through MIDAS, we are seeking proposals that combine advances in millimeter wave and digital beamforming technologies to create radios that will deliver secure communications for our military," said Hancock. To accomplish its goals, MIDAS is focused on two key technical areas. The first is the development of the silicon chips to form the core transceiver for the array tile. The second area is focused on the development of wide-band antennas, transmit/receive (T/R) components, and the overall integration of the system that will enable the technology to be used across multiple applications, including line-of-sight communications between tactical platforms as well as current and emerging satellite communications. Hancock envisions the four-year program being administered in three phases. A full program description can be found in the Broad Agency Announcement that was issued on January 23. Interested proposers have an opportunity to learn more about the MIDAS program during a Proposers Day, scheduled for 8:00am ET on January 26 in Arlington, Virginia. For more information on the event, visit here.
Kazan, Russia (SPX) Jan 17, 2018 SAU AstroChallenge employees are convinced that this new map of medium-scale travelling ionospheric disturbances will help find out the reasons of the emergence of such phenomena in midlatitude areas. MSTIDs have not yet been thoroughly studied. They significantly impact the distribution of radio signals, so appropriate research is of great practical importance. The paper, titled "Collocat ... read more Related Links Defense Advanced Research Projects Agency Read the latest in Military Space Communications Technology at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |